Screening fifth forces in generalized Proca theories

被引:79
作者
De Felice, Antonio [1 ]
Heisenberg, Lavinia [2 ]
Kase, Ryotaro [3 ]
Tsujikawa, Shinji [3 ]
Zhang, Ying-li [4 ,5 ]
Zhao, Gong-Bo [4 ,5 ]
机构
[1] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[2] ETH, Inst Theoret Studies, Clausiusstr 47, CH-8092 Zurich, Switzerland
[3] Tokyo Univ Sci, Dept Phys, Fac Sci, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan
[4] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China
[5] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England
关键词
MODIFIED GRAVITY;
D O I
10.1103/PhysRevD.93.104016
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
For a massive vector field with derivative self-interactions, the breaking of the gauge invariance allows the propagation of a longitudinal mode in addition to the two transverse modes. We consider generalized Proca theories with second-order equations of motion in a curved space-time and study how the longitudinal scalar mode of the vector field gravitates on a spherically symmetric background. We show explicitly that cubic-order self-interactions lead to the suppression of the longitudinal mode through the Vainshtein mechanism. Provided that the dimensionless coupling of the interaction is not negligible, this screening mechanism is sufficiently efficient to give rise to tiny corrections to gravitational potentials consistent with solar-system tests of gravity. We also study the quartic interactions with the presence of nonminimal derivative coupling with the Ricci scalar and find the existence of solutions where the longitudinal mode completely vanishes. Finally, we discuss the case in which the effect of the quartic interactions dominates over the cubic one and show that local gravity constraints can be satisfied under a mild bound on the parameters of the theory.
引用
收藏
页数:17
相关论文
共 39 条
[1]   Generalized Proca action for an Abelian vector field [J].
Allys, Erwan ;
Peter, Patrick ;
Rodriguez, Yeinzon .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (02)
[2]  
[Anonymous], 1850, Mem. Acad. St. Petersbourg
[3]   Cosmologies in Horndeski's second-order vector-tensor theory [J].
Barrow, John D. ;
Thorsrud, Mikjel ;
Yamamoto, Kei .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (02)
[4]   Revisiting fifth forces in the Galileon model [J].
Burrage, Clare ;
Seery, David .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2010, (08)
[5]   General Second-Order Scalar-Tensor Theory and Self-Tuning [J].
Charmousis, Christos ;
Copeland, Edmund J. ;
Padilla, Antonio ;
Saffin, Paul M. .
PHYSICAL REVIEW LETTERS, 2012, 108 (05)
[6]   Modified gravity and cosmology [J].
Clifton, Timothy ;
Ferreira, Pedro G. ;
Padilla, Antonio ;
Skordis, Constantinos .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2012, 513 (1-3) :1-189
[7]   Dynamics of dark energy [J].
Copeland, Edmund J. ;
Sami, M. ;
Tsujikawa, Shinji .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2006, 15 (11) :1753-1935
[8]   Vainshtein mechanism in second-order scalar-tensor theories [J].
De Felice, Antonio ;
Kase, Ryotaro ;
Tsujikawa, Shinji .
PHYSICAL REVIEW D, 2012, 85 (04)
[9]   Cosmology of the Galileon from massive gravity [J].
de Rham, Claudia ;
Heisenberg, Lavinia .
PHYSICAL REVIEW D, 2011, 84 (04)
[10]   From k-essence to generalized Galileons [J].
Deffayet, C. ;
Gao, Xian ;
Steer, D. A. ;
Zahariade, G. .
PHYSICAL REVIEW D, 2011, 84 (06)