ACTION-ANGLE VARIABLES NEAR DEGENERATE PERIODIC ORBITS

被引:0
作者
Wiesel, William E. [1 ]
机构
[1] US Air Force, Dept Aeronaut & Astronaut, Inst Technol, Astronaut Engn, 2950 Hobson Way, Wright Patterson AFB, OH 45433 USA
来源
ASTRODYNAMICS 2018, PTS I-IV | 2019年 / 167卷
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Classical Floquet theory describes motion near a periodic orbit. However, there is a missing piece in the Floquet solution. A different Jordan normal form allows the decoupling of modal dynamics near the periodic orbit, and not just on the periodic orbit. A new eigenvector solution is offered in the case of repeated eigenvalues. This solution extends the Floquet decomposition to adjacent trajectories, and is fully canonical. This also yields the matrix of frequency partial derivatives, extending the solution's validity. Some numerical examples are offered.
引用
收藏
页码:3 / 14
页数:12
相关论文
共 5 条
[1]   CANONICAL FLOQUET THEORY [J].
WIESEL, WE ;
POHLEN, DJ .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1994, 58 (01) :81-96
[2]   A KAM Tori Algorithm for Earth Satellite Orbits [J].
Wiesel, William E. .
JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2018, 65 (01) :46-62
[3]   A Numerical, Literal, and Converged Perturbation Algorithm [J].
Wiesel, William E. .
JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2017, 64 (03) :251-266
[4]   Low Eccentricity Earth Satellite KAM Tori [J].
Wiesel, William E. .
JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2015, 62 (03) :197-211
[5]   Earth Satellite Orbits as KAM Tori [J].
Wiesel, William E. .
JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2008, 56 (02) :151-162