Over-limiting Current and Control of Dendritic Growth by Surface Conduction in Nanopores

被引:99
作者
Han, Ji-Hyung [1 ]
Khoo, Edwin [1 ]
Bai, Peng [1 ]
Bazant, Martin Z. [1 ,2 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
来源
SCIENTIFIC REPORTS | 2014年 / 4卷
基金
新加坡国家研究基金会;
关键词
NANOPARTICLE HYBRID ELECTROLYTES; ION CONCENTRATION POLARIZATION; STABILITY ANALYSIS; ELECTRODEPOSITION; LITHIUM; METAL; COPPER; LAYER; PROPAGATION; INSTABILITY;
D O I
10.1038/srep07056
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding over-limiting current (faster than diffusion) is a long-standing challenge in electrochemistry with applications in desalination and energy storage. Known mechanisms involve either chemical or hydrodynamic instabilities in unconfined electrolytes. Here, it is shown that over-limiting current can be sustained by surface conduction in nanopores, without any such instabilities, and used to control dendritic growth during electrodeposition. Copper electrodeposits are grown in anodized aluminum oxide membranes with polyelectrolyte coatings to modify the surface charge. At low currents, uniform electroplating occurs, unaffected by surface modification due to thin electric double layers, but the morphology changes dramatically above the limiting current. With negative surface charge, growth is enhanced along the nanopore surfaces, forming surface dendrites and nanotubes behind a deionization shock. With positive surface charge, dendrites avoid the surfaces and are either guided along the nanopore centers or blocked from penetrating the membrane.
引用
收藏
页数:8
相关论文
共 71 条
  • [1] Layer-by-Layer Assembly of Polyelectrolytes into Ionic Current Rectifying Solid-State Nanopores: Insights from Theory and Experiment
    Ali, Mubarak
    Yameen, Basit
    Cervera, Javier
    Ramirez, Patricio
    Neumann, Reinhard
    Ensinger, Wolfgang
    Knoll, Wolfgang
    Azzaroni, Omar
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (24) : 8338 - 8348
  • [2] Current-Induced Membrane Discharge
    Andersen, M. B.
    van Soestbergen, M.
    Mani, A.
    Bruus, H.
    Biesheuvel, P. M.
    Bazant, M. Z.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (10)
  • [3] Andricacos P. C., 1999, Electrochemical Society Interface, V8, P32
  • [4] Layer-by-layer assemblies in nanoporous templates: nano-organized design and applications of soft nanotechnology
    Azzaroni, Omar
    Lau, K. H. Aaron
    [J]. SOFT MATTER, 2011, 7 (19) : 8709 - 8724
  • [5] THE DYNAMIC DIFFUSION LAYER IN BRANCHED GROWTH OF A CONDUCTIVE-POLYMER AGGREGATE IN A 2-D ELECTROLYSIS CELL
    BARKEY, DP
    LAPORTE, PD
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (05) : 1655 - 1656
  • [6] Theory of Chemical Kinetics and Charge Transfer based on Nonequilibrium Thermodynamics
    Bazant, Martin Z.
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (05) : 1144 - 1160
  • [7] REGULATION OF RAMIFIED ELECTROCHEMICAL GROWTH BY A DIFFUSIVE WAVE
    BAZANT, MZ
    [J]. PHYSICAL REVIEW E, 1995, 52 (02): : 1903 - 1914
  • [8] BRADY RM, 1984, NATURE, V309, P225, DOI 10.1038/309225a0
  • [9] Dendritic growth mechanisms in lithium/polymer cells
    Brissot, C
    Rosso, M
    Chazalviel, JN
    Lascaud, S
    [J]. JOURNAL OF POWER SOURCES, 1999, 81 : 925 - 929
  • [10] Nanoscale Electrokinetics and Microvortices: How Microhydrodynamics Affects Nanofluidic Ion Flux
    Chang, Hsueh-Chia
    Yossifon, Gilad
    Demekhin, Evgeny A.
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, VOL 44, 2012, 44 : 401 - 426