In the early times of isoprenoid research, a single pathway was found for the formation of the C-5 monomer, isopentenyl diphosphate (IPP), and this acetate/mevalonate pathway was supposed to occur ubiquitously in all living organisms. Now, 40 years later, a totally different IPP biosynthesis route has been detected in eubacteria, green algae and higher plants. In this new pathway glyceraldehyde 3-phosphate (GAP) and pyruvate are precursors of isopentenyl diphosphate, but not acetyl-CoA and mevalonic acid. In green tissues of three higher plants it was shown that all chloroplast-bound isoprenoids (beta-carotene, phytyl chains of chlorophylls and nona-prenyl chain of plastoquinone-9) are formed via the GAP/pyruvate pathway, whereas the cytoplasmic sterols are formed via the acetate/mevalonate pathway. Also, isoprene, emitted by various plants at high light conditions by action of the plastid-bound isoprene synthase, is formed via the new GAP/pyruvate pathway. Thus, in higher plants, there exist two separate and biochemically different IPP biosynthesis pathways: (1) the novel alternative GAP/pyruvate pathway apparently bound to the plastidic compartment and (2) the classical cytoplasmic acetate/mevalonate pathway. This new GAP/pyruvate pathway for IPP formation allows a reasonable interpretation of previous odd results concerning the biosynthesis of chloroplast isoprenoids, which, so far, had mainly been interpreted assuming compartmentation differences. The novel GAP/pyruvate pathway for IPP formation in plastids appears as a heritage of their prokaryotic, endosymbiotic ancestors.