Application of Deep Neural Network to the Reconstruction of Two-Phase Material Imaging by Capacitively Coupled Electrical Resistance Tomography

被引:16
作者
Chen, Zhuoran [1 ]
Ma, Gege [1 ]
Jiang, Yandan [2 ]
Wang, Baoliang [2 ]
Soleimani, Manuchehr [1 ]
机构
[1] Univ Bath, Dept Elect & Elect Engn, Engn Tomog Lab ETL, Bath BA2 7AY, Avon, England
[2] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310058, Peoples R China
关键词
convolutional neural network (CNN); supervised deep learning; capacitively coupled electrical resistance tomography (CCERT); image reconstruction; INVERSE PROBLEMS; IMPEDANCE; DESIGN; SENSOR;
D O I
10.3390/electronics10091058
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A convolutional neural network (CNN)-based image reconstruction algorithm for two-phase material imaging is presented and verified with experimental data from a capacitively coupled electrical resistance tomography (CCERT) sensor. As a contactless version of electrical resistance tomography (ERT), CCERT has advantages such as no invasion, low cost, no radiation, and rapid response for two-phase material imaging. Besides that, CCERT avoids contact error of ERT by imaging from outside of the pipe. Forward modeling was implemented based on the practical circular array sensor, and the inverse image reconstruction was realized by a CNN-based supervised learning algorithm, as well as the well-known total variation (TV) regularization algorithm for comparison. The 2D, monochrome, 2500-pixel image was divided into 625 clusters, and each cluster was used individually to train its own CNN to solve the 16 classes classification problem. Inherent regularization for the assumption of binary materials enabled us to use a classification algorithm with CNN. The iterative TV regularization algorithm achieved a close state of the two-phase material reconstruction by its sparsity-based assumption. The supervised learning algorithm established the mathematical model that mapped the simulated resistance measurement to the pixel patterns of the clusters. The training process was carried out only using simulated measurement data, but simulated and experimental tests were both conducted to investigate the feasibility of applying a multi-layer CNN for CCERT imaging. The performance of the CNN algorithm on the simulated data is demonstrated, and the comparison between the results created by the TV-based algorithm and the proposed CNN algorithm with the real-world data is also provided.
引用
收藏
页数:23
相关论文
共 39 条
[1]   GREIT: a unified approach to 2D linear EIT reconstruction of lung images [J].
Adler, Andy ;
Arnold, John H. ;
Bayford, Richard ;
Borsic, Andrea ;
Brown, Brian ;
Dixon, Paul ;
Faes, Theo J. C. ;
Frerichs, Inez ;
Gagnon, Herve ;
Gaerber, Yvo ;
Grychtol, Bartlomiej ;
Hahn, Guenter ;
Lionheart, William R. B. ;
Malik, Anjum ;
Patterson, Robert P. ;
Stocks, Janet ;
Tizzard, Andrew ;
Weiler, Norbert ;
Wolf, Gerhard K. .
PHYSIOLOGICAL MEASUREMENT, 2009, 30 (06) :S35-S55
[2]  
Amjad J, 2018, EUR SIGNAL PR CONF, P1895, DOI 10.23919/EUSIPCO.2018.8553376
[3]   APPLIED POTENTIAL TOMOGRAPHY [J].
BARBER, DC ;
BROWN, BH .
JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1984, 17 (09) :723-733
[4]  
Boyle A., 2020, ELECT IMPEDANCE TOMO
[5]   The impact of electrode area, contact impedance and boundary shape on EIT images [J].
Boyle, Alistair ;
Adler, Andy .
PHYSIOLOGICAL MEASUREMENT, 2011, 32 (07)
[6]   APPLIED POTENTIAL TOMOGRAPHY - POSSIBLE CLINICAL-APPLICATIONS [J].
BROWN, BH ;
BARBER, DC ;
SEAGAR, AD .
CLINICAL PHYSICS AND PHYSIOLOGICAL MEASUREMENT, 1985, 6 (02) :109-121
[7]   Medical impedance tomography and process impedance tomography: a brief review [J].
Brown, BH .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2001, 12 (08) :991-996
[8]   A fast EIT image reconstruction method for the two-phase flow visualization [J].
Cho, KH ;
Kim, S ;
Lee, YJ .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 1999, 26 (05) :637-646
[9]   Deep Learning: Methods and Applications [J].
Deng, Li ;
Yu, Dong .
FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING, 2013, 7 (3-4) :I-387
[10]   Solving electrical impedance tomography with deep learning [J].
Fan, Yuwei ;
Ying, Lexing .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 404