The distance matrix of a simple graph G is D(G) = (d(i, j)), where d(i, j) is the distance between the ith and jth vertices of G. The distance spectral radius of G, written lambda(1)(G), is the largest eigenvalue of D(G). We determine the distance spectral radius of the wheel graph W-n, a particular type of spider graphs, and the generalized Petersen graph P(n, k) for k is an element of {2, 3}.