A decision support system based on radiomics and machine learning to predict the risk of malignancy of ovarian masses from transvaginal ultrasonography and serum CA-125

被引:25
作者
Chiappa, Valentina [1 ]
Interlenghi, Matteo [2 ]
Bogani, Giorgio [1 ]
Salvatore, Christian [2 ]
Bertolina, Francesca [1 ]
Sarpietro, Giuseppe [1 ]
Signorelli, Mauro [1 ]
Ronzulli, Dominique [3 ]
Castiglioni, Isabella [4 ]
Raspagliesi, Francesco [1 ]
机构
[1] Fdn IRCCS Ist Nazl Tumori Milano, Dept Gynecol Oncol, Via Venezian 1, I-20133 Milan, Italy
[2] DeepTrace Technol SRL, Milan, Italy
[3] Fdn IRCCS Ist Nazl Tumori Milano, Clin Trial Ctr, Milan, Italy
[4] Univ Milano Bicocca, Dipartimento Fis G Occhialini, Milan, Italy
关键词
Artificial intelligence; Machine learning; CA-125; antigen; Ovarian neoplasms; Ultrasonography; ADNEXAL MASSES; ULTRASOUND; CANCER; DIAGNOSIS; TUMORS; MODEL;
D O I
10.1186/s41747-021-00226-0
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background To evaluate the performance of a decision support system (DSS) based on radiomics and machine learning in predicting the risk of malignancy of ovarian masses (OMs) from transvaginal ultrasonography (TUS) and serum CA-125. Methods A total of 274 consecutive patients who underwent TUS (by different examiners and with different ultrasound machines) and surgery, with suspicious OMs and known CA-125 serum level were used to train and test a DSS. The DSS was used to predict the risk of malignancy of these masses (very low versus medium-high risk), based on the US appearance (solid, liquid, or mixed) and radiomic features (morphometry and regional texture features) within the masses, on the shadow presence (yes/no), and on the level of serum CA-125. Reproducibility of results among the examiners, and performance accuracy, sensitivity, specificity, and area under the curve were tested in a real-world clinical setting. Results The DSS showed a mean 88% accuracy, 99% sensitivity, and 77% specificity for the 239 patients used for training, cross-validation, and testing, and a mean 91% accuracy, 100% sensitivity, and 80% specificity for the 35 patients used for independent testing. Conclusions This DSS is a promising tool in women diagnosed with OMs at TUS, allowing to predict the individual risk of malignancy, supporting clinical decision making.
引用
收藏
页数:15
相关论文
共 33 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]  
American College of Obstetricians and Gynecologists Committee on Practice BulletinsGynecology, 2016, Obstet Gynecol, V128, pe210
[3]   Predicting ovarian malignancy: Application of artificial neural networks to transvaginal and color Doppler flow US [J].
Biagiotti, R ;
Desii, C ;
Vanzi, E ;
Gacci, G .
RADIOLOGY, 1999, 210 (02) :399-403
[4]  
Bruning J, 1997, METHOD INFORM MED, V36, P201
[5]   Using rADioMIcs and machine learning with ultrasonography for the differential diagnosis of myometRiAL tumors (the ADMIRAL pilot study). Radiomics and differential diagnosis of myometrial tumors [J].
Chiappa, V ;
Interlenghi, M. ;
Salvatore, C. ;
Bertolina, F. ;
Bogani, G. ;
Ditto, A. ;
Martinelli, F. ;
Castiglioni, I ;
Raspagliesi, F. .
GYNECOLOGIC ONCOLOGY, 2021, 161 (03) :838-844
[6]   The Adoption of Radiomics and machine learning improves the diagnostic processes of women with Ovarian MAsses (the AROMA pilot study) [J].
Chiappa, Valentina ;
Bogani, Giorgio ;
Interlenghi, Matteo ;
Salvatore, Christian ;
Bertolina, Francesca ;
Sarpietro, Giuseppe ;
Signorelli, Mauro ;
Castiglioni, Isabella ;
Raspagliesi, Francesco .
JOURNAL OF ULTRASOUND, 2021, 24 (04) :429-437
[7]   True Reproducibility of UltraSound Techniques (TRUST): systematic review of reliability studies in obstetrics and gynecology [J].
Coelho Neto, M. A. ;
Roncato, P. ;
Nastri, C. O. ;
Martins, W. P. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2015, 46 (01) :14-20
[8]  
Comm Gynecologic Practice, 2003, INT J GYNECOL OBSTET, V80, P235
[9]   Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods [J].
Ferlay, J. ;
Colombet, M. ;
Soerjomataram, I. ;
Mathers, C. ;
Parkin, D. M. ;
Pineros, M. ;
Znaor, A. ;
Bray, F. .
INTERNATIONAL JOURNAL OF CANCER, 2019, 144 (08) :1941-1953
[10]   Cancer statistics for the year 2020: An overview [J].
Ferlay, Jacques ;
Colombet, Murielle ;
Soerjomataram, Isabelle ;
Parkin, Donald M. ;
Pineros, Marion ;
Znaor, Ariana ;
Bray, Freddie .
INTERNATIONAL JOURNAL OF CANCER, 2021, 149 (04) :778-789