A new hybrid generalized proximal point algorithm for variational inequality problems

被引:24
作者
Han, D [1 ]
机构
[1] Nanjing Normal Univ, Sch Math & Comp Sci, Nanjing 210097, Peoples R China
关键词
Bregman functions; inexact methods; monotone operators; proximal point algorithms; variational inequalities;
D O I
10.1023/A:1023087304476
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose a modified Bregman-function-based proximal point algorithm for solving variational inequality problems. The algorithm adopts a similar constructive approximate criterion as the one developed by Solodov and Svaiter (Set Valued Analysis 7 (1999) 323) for solving the classical proximal subproblems. Under some suitable conditions, we can get an approximate solution satisfying the accuracy criterion via a single Newton-type step. We obtain the Fejer monotonicity to solutions of VIP for paramonotone operators. Some preliminary computational results are also reported to illustrate the method.
引用
收藏
页码:125 / 140
页数:16
相关论文
共 26 条
[1]   A logarithmic-quadratic proximal method for variational inequalities [J].
Auslender, A ;
Teboulle, M ;
Ben-Tiba, S .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 12 (1-3) :31-40
[2]   Interior proximal and multiplier methods based on second order homogeneous kernels [J].
Auslender, A ;
Teboulle, M ;
Ben-Tiba, S .
MATHEMATICS OF OPERATIONS RESEARCH, 1999, 24 (03) :645-668
[3]  
Bauschke H. H., 1997, J CONVEX ANAL, V4, P27
[4]  
Bregman LM, 1967, USSR Computational Mathematics and Mathematical Physics, V7, P200
[5]   A generalized proximal point algorithm for the variational inequality problem in a Hilbert space [J].
Burachik, RS ;
Iusem, AN .
SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (01) :197-216
[6]   Enlargement of monotone operators with applications to variational inequalities [J].
Burachik, RS ;
Iusem, AN ;
Svaiter, BF .
SET-VALUED ANALYSIS, 1997, 5 (02) :159-180
[7]   An interior point method with Bregman functions for the variational inequality problem with paramonotone operators [J].
Censor, Y ;
Iusem, AN ;
Zenios, SA .
MATHEMATICAL PROGRAMMING, 1998, 81 (03) :373-400
[8]   PROXIMAL MINIMIZATION ALGORITHM WITH D-FUNCTIONS [J].
CENSOR, Y ;
ZENIOS, SA .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 73 (03) :451-464
[9]   CONVERGENCE ANALYSIS OF A PROXIMAL-LIKE MINIMIZATION ALGORITHM USING BREGMAN FUNCTIONS [J].
Chen, Gong ;
Teboulle, Marc .
SIAM JOURNAL ON OPTIMIZATION, 1993, 3 (03) :538-543
[10]  
EAVES BC, 1978, MATH PROGRAM STUD, V7, P1, DOI 10.1007/BFb0120778