Non-equilibrium molecular dynamics integrators using Maple

被引:4
作者
Searles, DJ [1 ]
Isbister, DJ
Evans, DJ
机构
[1] Univ Queensland, Dept Chem, Brisbane, Qld 4072, Australia
[2] Univ NSW Coll, ADFA, Sch Phys, Canberra, ACT 2600, Australia
[3] Australian Natl Univ, Res Sch Chem, Canberra, ACT, Australia
关键词
D O I
10.1016/S0378-4754(97)00091-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The conjugate pairing rule states that for Hamiltonian systems to which a Gaussian or Nose-Hoover thermostat is applied. the spectrum of Lyapunov exponents should exhibit a simple symmetry: that the sum of conjugate pairs of exponents should be a constant independent of the pair index. This symmetry is important for it enables one to calculate the entropy production and thereby the non-equilibrium transport coefficient, by summing just two exponents, say the maximal exponents. However, the conjugate pairing rule has never been proved for the standard computer simulation algorithm for shear flow namely the Sllod algorithm. We use the symbolic algebra program, Maple, to examine the validity of the conjugate pairing rule for the Sllod algorithm. We do this by using the multiple precision facility of Maple to carry out computer simulations for Sllod to very high accuracy. We also use the symbolic algebra capability of Maple to prove the conjugate pairing rule for ideal gases subject to thermostatted shear flow and also for unthermostatted shear flow of fluids at arbitrary density. (C) 1998 IMACS/Elsevier Science B.V.
引用
收藏
页码:147 / 162
页数:16
相关论文
共 50 条
[31]   Study of Thermal Conductivity of Germanene Based on the Equilibrium and Non-Equilibrium Molecular Dynamics [J].
Dong Haikuan ;
Xiu Xiaoming ;
Shi Libin .
RARE METAL MATERIALS AND ENGINEERING, 2019, 48 (12) :3990-3996
[32]   Study of Thermal Conductivity of Germanene Based on the Equilibrium and Non-Equilibrium Molecular Dynamics [J].
Dong, Haikuan ;
Xiu, Xiaoming ;
Shi, Libin .
Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2019, 48 (12) :3990-3996
[33]   Calculation of the transport properties of liquid aluminum with equilibrium and non-equilibrium molecular dynamics [J].
Cherne, FJ ;
Deymier, PA .
SCRIPTA MATERIALIA, 2001, 45 (08) :985-991
[34]   Energy flow in thermostatted non-equilibrium molecular dynamics simulations [J].
Daivis, P. J. .
MOLECULAR PHYSICS, 2019, 117 (23-24) :3812-3818
[35]   Rheology of wormlike micelles from non-equilibrium molecular dynamics [J].
Castillo-Tejas, J. ;
Alvarado, J. F. J. ;
Carro, S. ;
Perez-Villasenor, F. ;
Bautista, F. ;
Manero, O. .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2011, 166 (3-4) :194-207
[36]   Classical molecular dynamics simulations for non-equilibrium correlated plasmas [J].
Ferri, S. ;
Calisti, A. ;
Talin, B. .
ATOMIC PROCESSES IN PLASMAS (APIP 2016), 2017, 1811
[37]   Incremental viscosity by non-equilibrium molecular dynamics and the Eyring model [J].
Heyes, D. M. ;
Dini, D. ;
Smith, E. R. .
JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (19)
[38]   Calculation of microscopic stress tensor with non-equilibrium molecular dynamics [J].
Ito, Atsushi ;
Nakamura, Hiroaki .
Theoretical and Applied Mechanics Japan, 2009, 57 :159-167
[39]   A localized momentum constraint for non-equilibrium molecular dynamics simulations [J].
Smith, E. R. ;
Heyes, D. M. ;
Dini, D. ;
Zaki, T. A. .
JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (07)
[40]   INFLATION AND NON-EQUILIBRIUM DYNAMICS [J].
PI, SY .
PHYSICA A, 1989, 158 (01) :366-376