Non-equilibrium molecular dynamics integrators using Maple

被引:4
|
作者
Searles, DJ [1 ]
Isbister, DJ
Evans, DJ
机构
[1] Univ Queensland, Dept Chem, Brisbane, Qld 4072, Australia
[2] Univ NSW Coll, ADFA, Sch Phys, Canberra, ACT 2600, Australia
[3] Australian Natl Univ, Res Sch Chem, Canberra, ACT, Australia
关键词
D O I
10.1016/S0378-4754(97)00091-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The conjugate pairing rule states that for Hamiltonian systems to which a Gaussian or Nose-Hoover thermostat is applied. the spectrum of Lyapunov exponents should exhibit a simple symmetry: that the sum of conjugate pairs of exponents should be a constant independent of the pair index. This symmetry is important for it enables one to calculate the entropy production and thereby the non-equilibrium transport coefficient, by summing just two exponents, say the maximal exponents. However, the conjugate pairing rule has never been proved for the standard computer simulation algorithm for shear flow namely the Sllod algorithm. We use the symbolic algebra program, Maple, to examine the validity of the conjugate pairing rule for the Sllod algorithm. We do this by using the multiple precision facility of Maple to carry out computer simulations for Sllod to very high accuracy. We also use the symbolic algebra capability of Maple to prove the conjugate pairing rule for ideal gases subject to thermostatted shear flow and also for unthermostatted shear flow of fluids at arbitrary density. (C) 1998 IMACS/Elsevier Science B.V.
引用
收藏
页码:147 / 162
页数:16
相关论文
共 50 条
  • [1] Non-equilibrium molecular dynamics integrators using Maple
    Univ of Queensland, Brisbane
    Math Comput Simul, 1-2 (147-162):
  • [2] Computing Equilibrium Free Energies Using Non-Equilibrium Molecular Dynamics
    Dellago, Christoph
    Hummer, Gerhard
    ENTROPY, 2014, 16 (01): : 41 - 61
  • [3] Dynamical Non-Equilibrium Molecular Dynamics
    Ciccotti, Giovanni
    Ferrario, Mauro
    ENTROPY, 2014, 16 (01): : 233 - 257
  • [4] Reverse non-equilibrium molecular dynamics
    Müller-Plathe, F
    Bordat, P
    NOVEL METHODS IN SOFT MATTER SIMULATIONS, 2004, 640 : 310 - 326
  • [5] NON-EQUILIBRIUM MOLECULAR-DYNAMICS
    HOOVER, WG
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1983, 34 : 103 - 127
  • [6] On multiscale non-equilibrium molecular dynamics simulations
    Li, Shaofan
    Sheng, Ni
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (8-9) : 998 - 1038
  • [7] On non-equilibrium molecular dynamics with Euclidean objectivity
    Zidong Yang
    James D. Lee
    I-Shih Liu
    Azim Eskandarian
    Acta Mechanica, 2017, 228 : 693 - 710
  • [8] On non-equilibrium molecular dynamics with Euclidean objectivity
    Yang, Zidong
    Lee, James D.
    Liu, I-Shih
    Eskandarian, Azim
    ACTA MECHANICA, 2017, 228 (02) : 693 - 710
  • [9] Nanowire Stretching by Non-Equilibrium Molecular Dynamics
    Heyes, D. M.
    Dini, D.
    Smith, E. R.
    Branka, A. C.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2017, 254 (12):
  • [10] Molecular Dynamics in the Light of Non-equilibrium Thermodynamics
    Aoki, Keiko M.
    Ohnishi, Shuhei
    Sogo, Kiyoshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2022, 91 (07)