Higher-order optimality conditions for weakly efficient solutions in nonconvex set-valued optimization

被引:37
作者
Wang, Q. L. [1 ,2 ]
Li, S. J. [1 ]
Teo, K. L. [3 ]
机构
[1] Chongqing Univ, Coll Math & Sci, Chongqing 400044, Peoples R China
[2] Chongqing Jiaotong Univ, Coll Sci, Chongqing 400074, Peoples R China
[3] Curtin Univ Technol, Dept Math & Stat, Perth, WA 6845, Australia
基金
中国国家自然科学基金;
关键词
Nonconvex set-valued optimization; Generalized higher-order contingent (adjacent) derivatives Gerstewitz's nonconvex separation functional; Weakly efficient solutions; Higher-order optimality conditions; VECTOR OPTIMIZATION; MINIMIZERS; 2ND-ORDER; EXISTENCE;
D O I
10.1007/s11590-009-0170-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, generalized higher-order contingent (adjacent) derivatives of set-valued maps are introduced and some of their properties are discussed. Under no any convexity assumptions, necessary and sufficient optimality conditions are obtained for weakly efficient solutions of set-valued optimization problems by employing the generalized higher-order derivatives.
引用
收藏
页码:425 / 437
页数:13
相关论文
共 17 条
[1]  
Aubin J.P., 1990, SET VALUED ANAL, DOI 10.1007/978-0-8176-4848-0
[2]   Existence of minimizers and necessary conditions in set-valued optimization with equilibrium constraints [J].
Bao, Truong Q. ;
Mordukhovich, Boris S. .
APPLICATIONS OF MATHEMATICS, 2007, 52 (06) :453-472
[3]   Relative Pareto minimizers for multiobjective problems: existence and optimality conditions [J].
Bao, Truong Q. ;
Mordukhovich, Boris S. .
MATHEMATICAL PROGRAMMING, 2010, 122 (02) :301-347
[4]   Necessary conditions for super minimizers in constrained multiobjective optimization [J].
Bao, Truong Q. ;
Mordukhovich, Boris S. .
JOURNAL OF GLOBAL OPTIMIZATION, 2009, 43 (04) :533-552
[5]  
CERTH C, 1990, J OPTIM THEORY APPL, V67, P297
[6]   Optimality conditions for set-valued optimization problems [J].
Chen, GY ;
Jahn, J .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 1998, 48 (02) :187-200
[7]   OPTIMALITY CONDITIONS FOR MAXIMIZATIONS OF SET-VALUED FUNCTIONS [J].
CORLEY, HW .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1988, 58 (01) :1-10
[8]   Second-order optimality conditions in set optimization [J].
Jahn, J ;
Khan, AA ;
Zeilinger, P .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 125 (02) :331-347
[9]  
Jahn J., 2004, VECTOR OPTIMIZATION, P2011
[10]   Second order necessary conditions in set constrained differentiable vector optimization [J].
Jiménez, B ;
Novo, V .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2003, 58 (02) :299-317