ROCplot.org: Validating predictive biomarkers of chemotherapy/hormonal therapy/anti-HER2 therapy using transcriptomic data of 3,104 breast cancer patients

被引:267
作者
Fekete, Janos T. [1 ]
Gyorffy, Balazs [1 ,2 ]
机构
[1] Semmelweis Univ, Dept Pediat 2, Budapest, Hungary
[2] Hungarian Acad Sci, Inst Enzymol, MTA TTK Lendulet Canc Biomarker Res Grp, Budapest, Hungary
关键词
chemotherapy; hormonal therapy; targeted therapy; ROC; relapse-free survival; molecular subtypes; ANALYSIS TOOL; RESISTANCE; PACLITAXEL; SURVIVAL; EXPRESSION; GENES; CELLS; TRASTUZUMAB; SIGNATURES; INDUCTION;
D O I
10.1002/ijc.32369
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Systemic therapy of breast cancer can include chemotherapy, hormonal therapy and targeted therapy. Prognostic biomarkers are able to predict survival and predictive biomarkers are able to predict therapy response. In this report, we describe the initial release of the first available online tool able to identify gene expression-based predictive biomarkers using transcriptomic data of a large set of breast cancer patients. Published gene expression data of 36 publicly available datasets were integrated with treatment data into a unified database. Response to therapy was determined using either author-reported pathological complete response data (n = 1,775) or relapse-free survival status at 5 years (n = 1,329). Treatment data includes chemotherapy (n = 2,108), endocrine therapy (n = 971) and anti-human epidermal growth factor receptor 2 (HER2) therapy (n = 267). The transcriptomic database includes 20,089 unique genes and 54,675 probe sets. Gene expression and therapy response are compared using receiver operating characteristics and Mann-Whitney tests. We demonstrate the utility of the pipeline by cross-validating 23 paclitaxel resistance-associated genes in different molecular subtypes of breast cancer. An additional set of established biomarkers including TP53 for chemotherapy in Luminal breast cancer (p = 1.01E-19, AUC = 0.769), HER2 for trastuzumab therapy (p = 8.4E-04, AUC = 0.629) and PGR for hormonal therapy (p = 8.6E-05, AUC = 0.7), are also endorsed. The tool is designed to validate and rank new predictive biomarker candidates in real time. By analyzing the selected genes in a large set of independent patients, one can select the most robust candidates and quickly eliminate those that are most likely to fail in a clinical setting. The analysis tool is accessible at .
引用
收藏
页码:3140 / 3151
页数:12
相关论文
共 38 条
[1]   The PI3K inhibitor LY294002 blocks drug export from resistant colon carcinoma cells overexpressing MRP1 [J].
Abdul-Ghani, R ;
Serra, V ;
Györffy, B ;
Jürchott, K ;
Solf, A ;
Dietel, M ;
Schäfer, R .
ONCOGENE, 2006, 25 (12) :1743-1752
[2]  
ABE O, 1992, LANCET, V339, P71
[3]   PPISURV: a novel bioinformatics tool for uncovering the hidden role of specific genes in cancer survival outcome [J].
Antonov, A. V. ;
Krestyaninova, M. ;
Knight, R. A. ;
Rodchenkov, I. ;
Melino, G. ;
Barlev, N. A. .
ONCOGENE, 2014, 33 (13) :1621-1628
[4]   Increased levels of tyrosinated α-, βIII-, and βIV-tubulin isotypes in paclitaxel-resistant MCF-7 breast cancer cells [J].
Banerjee, A .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2002, 293 (01) :598-601
[5]   KM-express: an integrated online patient survival and gene expression analysis tool for the identification and functional characterization of prognostic markers in breast and prostate cancers [J].
Chen, Xin ;
Miao, Zhengqiang ;
Divate, Mayur ;
Zhao, Zuxianglan ;
Cheung, Edwin .
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2018,
[6]  
Childs S, 1998, CANCER RES, V58, P4160
[7]   De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017 (vol 28, pg 1700, 2017) [J].
Curigliano, G. ;
Burstein, H. J. ;
Winer, E. P. ;
Gnant, M. ;
Dubsky, P. ;
Loibl, S. ;
Colleoni, M. ;
Regan, M. M. ;
Piccart-Gebhart, M. ;
Senn, H. -J. ;
Thurlimann, B. ;
Andre, F. ;
Baselga, J. ;
Bergh, J. ;
Bonnefoi, H. ;
Brucker, S. Y. ;
Cardoso, F. ;
Carey, L. ;
Ciruelos, E. ;
Cuzick, J. ;
Denkert, C. ;
Di Leo, A. ;
Ejlertsen, B. ;
Francis, P. ;
Galimberti, V. ;
Garber, J. ;
Gulluoglu, B. ;
Goodwin, P. ;
Harbeck, N. ;
Hayes, D. F. ;
Huang, C. -S. ;
Huober, J. ;
Khaled, H. ;
Jassem, J. ;
Jiang, Z. ;
Karlsson, P. ;
Morrow, M. ;
Orecchia, R. ;
Osborne, K. C. ;
Pagani, O. ;
Partridge, A. H. ;
Pritchard, K. ;
Ro, J. ;
Rutgers, E. J. T. ;
Sedlmayer, F. ;
Semiglazov, V. ;
Shao, Z. ;
Smith, I. ;
Toi, M. ;
Tutt, A. .
ANNALS OF ONCOLOGY, 2018, 29 (10) :2153-2153
[8]   Genomic signatures for paclitaxel and gemcitabine resistance in breast cancer derived by machine learning [J].
Dorman, Stephanie N. ;
Baranoua, Katherina ;
Knoll, Joan H. M. ;
Urquhart, Brad L. ;
Mariani, Gabriella ;
Carcangiu, Maria Luisa ;
Rogan, Peter K. .
MOLECULAR ONCOLOGY, 2016, 10 (01) :85-100
[9]   Description of paclitaxel resistance-associated genes in ovarian and breast cancer cell lines [J].
Duan, ZF ;
Lamendola, DE ;
Duan, YF ;
Yusuf, RZ ;
Seiden, MV .
CANCER CHEMOTHERAPY AND PHARMACOLOGY, 2005, 55 (03) :277-285
[10]   Hormone receptor status, tumor characteristics, and prognosis: a prospective cohort of breast cancer patients [J].
Dunnwald, Lisa K. ;
Rossing, Mary Anne ;
Li, Christopher I. .
BREAST CANCER RESEARCH, 2007, 9 (01)