Separation of light confinement and absorption sites for enhancing solar water splitting

被引:5
作者
Niv, A. [1 ]
Koren, M. Gross [2 ]
Dotan, H. [2 ]
Bartal, G. [3 ]
Rothschild, A. [2 ]
机构
[1] Ben Gurion Univ Negev, Jacob Blaustein Inst Desert Res, Swiss Inst Dryland Environm & Energy Res, IL-84105 Beer Sheva, Israel
[2] Technion Israel Inst Technol, Dept Mat Sci & Engn, IL-32000 Haifa, Israel
[3] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
基金
欧洲研究理事会; 以色列科学基金会;
关键词
HEMATITE; CELLS;
D O I
10.1039/c5ta06972f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lambertian light trapping is a well-known method for enhancing the light harvesting efficiency of solar cells. Since it is based on ray optics, it is conventionally considered as inapplicable for subwavelength ultrathin films. Here we show a way around this limitation by separating the light confinement and absorption sites within the stack of materials comprising the entire cell. We demonstrate this approach for ultrathin film hematite (alpha-Fe2O3) photoanodes designed for renewable hydrogen production via solar water splitting. Attaching a Lambertian back reflector (that is, a white scattering sheet) to the backside of the cell results in a photocurrent enhancement of 25% to 30%, depending on the hematite thickness, in comparison to the same cell with a specular back reflector (i.e., a mirror). Theoretical analysis suggests that even higher enhancement may be possible, exceeding 40% in some cases, if light escape through the cell edges could be prevented. The proposed approach is not material-specific and can be readily implemented in other materials and other types of solar cells. Another advantage of this approach is that the light management is achieved using simple commercial products, making the proposed approach cost-effective and easy to implement in a variety of solar cells and photodetectors.
引用
收藏
页码:3043 / 3051
页数:9
相关论文
共 41 条
[11]   Using radiative transfer equation to model absorption by thin Cu(In,Ga)Se2 solar cells with Lambertian back reflector [J].
Dahan, N. ;
Jehl, Z. ;
Guillemoles, J. F. ;
Lincot, D. ;
Naghavi, N. ;
Greffet, J. -J. .
OPTICS EXPRESS, 2013, 21 (03) :2563-2580
[12]  
Dotan H., 2014, ENERG ENVIRON SCI, V4, P958
[13]  
Dotan H, 2013, NAT MATER, V12, P158, DOI [10.1038/NMAT3477, 10.1038/nmat3477]
[14]   Light Trapping Textures Designed by Electromagnetic Optimization for Subwavelength Thick Solar Cells [J].
Ganapati, Vidya ;
Miller, Owen D. ;
Yablonovitch, Eli .
IEEE JOURNAL OF PHOTOVOLTAICS, 2014, 4 (01) :175-182
[15]   THE EFFECT OF PARASITIC ABSORPTION LOSSES ON LIGHT TRAPPING IN THIN SILICON SOLAR-CELLS [J].
GEE, JM .
CONFERENCE RECORD OF THE TWENTIETH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE - 1988, VOLS 1-2, 1988, :549-554
[16]   Band-gap measurements of bulk and nanoscale hematite by soft x-ray spectroscopy [J].
Gilbert, B. ;
Frandsen, C. ;
Maxey, E. R. ;
Sherman, D. M. .
PHYSICAL REVIEW B, 2009, 79 (03)
[17]   Light Absorption Enhancement in Thin-Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres [J].
Grandidier, Jonathan ;
Callahan, Dennis M. ;
Munday, Jeremy N. ;
Atwater, Harry A. .
ADVANCED MATERIALS, 2011, 23 (10) :1272-+
[18]   Lambertian light trapping in textured solar cells and light-emitting diodes: Analytical solutions [J].
Green, MA .
PROGRESS IN PHOTOVOLTAICS, 2002, 10 (04) :235-241
[19]   A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells [J].
Jager, K. ;
Fischer, M. ;
van Swaaij, R. A. C. M. M. ;
Zeman, M. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (08)
[20]   Toward solar fuels: Water splitting with sunlight and "rust"? [J].
Katz, Michael J. ;
Riha, Shannon C. ;
Jeong, Nak Cheon ;
Martinson, Alex B. F. ;
Farha, Omar K. ;
Hupp, Joseph T. .
COORDINATION CHEMISTRY REVIEWS, 2012, 256 (21-22) :2521-2529