2D non-LTE modelling of a filament observed in the Hα line with the DST/IBIS spectropolarimeter

被引:12
|
作者
Schwartz, P. [1 ]
Gunar, S. [2 ]
Jenkins, J. M. [3 ]
Long, D. M. [3 ]
Heinzel, P. [2 ]
Choudhary, D. P. [4 ]
机构
[1] Slovak Acad Sci, Astron Inst, Tatranska Lomnica 05960, Slovakia
[2] Czech Acad Sci, Astron Inst, Ondrejov 25165, Czech Republic
[3] UCL, Mullard Space Sci Lab, Surrey RH5 6NT, England
[4] Calif State Univ, Dept Phys & Astron, Northridge, CA 91330 USA
关键词
Sun; filaments; prominences; radiative transfer; line; profiles; techniques; spectroscopic; methods; data analysis; numerical; PARTIAL FREQUENCY REDISTRIBUTION; 2-DIMENSIONAL RADIATIVE-TRANSFER; PROMINENCE FINE-STRUCTURES; SOLAR PROMINENCES; MAGNETIC EQUILIBRIUM; RESONANCE LINES; INVERSION; INSTRUMENT; SOHO/SUMER; FLOWS;
D O I
10.1051/0004-6361/201935358
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. We study a fragment of a large quiescent filament observed on May 29, 2017 by the Interferometric BIdimensional Spectropolarimeter (IBIS) mounted at the Dunn Solar Telescope. We focus on its quiescent stage prior to its eruption. Aims. We analyse the spectral observations obtained in the H alpha line to derive the thermodynamic properties of the plasma of the observed fragment of the filament. Methods. We used a 2D filament model employing radiative transfer computations under conditions that depart from the local thermodynamic equilibrium. We employed a forward modelling technique in which we used the 2D model to produce synthetic H alpha line profiles that we compared with the observations. We then found the set of model input parameters, which produces synthetic spectra with the best agreement with observations. Results. Our analysis shows that one part of the observed fragment of the filament is cooler, denser, and more dynamic than its other part that is hotter, less dense, and more quiescent. The derived temperatures in the first part range from 6000 K to 10 000 K and in the latter part from 11 000 K to 14 000 K. The gas pressure is 0.2-0.4 dyn cm(-2) in the first part and around 0.15 dyn cm(-2) in the latter part. The more dynamic nature of the first part is characterised by the line-of-sight velocities with absolute values of 6-7 km s(-1) and microturbulent velocities of 8-9 km s(-1). On the other hand, the latter part exhibits line-of-sight velocities with absolute values 0-2.5 km s(-1) and microturbulent velocities of 4-6 km s(-1).
引用
收藏
页数:12
相关论文
共 31 条
  • [1] Dynamics of quiescent prominence fine structures analyzed by 2D non-LTE modelling of the Hα line
    Gunar, S.
    Mein, P.
    Schmieder, B.
    Heinzel, P.
    Mein, N.
    ASTRONOMY & ASTROPHYSICS, 2012, 543
  • [2] 1.5D non-LTE spectral synthesis of a 3D filament and prominence simulation
    Jenkins, J. M.
    Osborne, C. M. J.
    Keppens, R.
    ASTRONOMY & ASTROPHYSICS, 2023, 670
  • [3] Non-LTE modelling of prominence fine structures using hydrogen Lyman-line profiles
    Schwartz, P.
    Gunar, S.
    Curdt, W.
    ASTRONOMY & ASTROPHYSICS, 2015, 577
  • [4] 2D non-LTE radiative modelling of He I spectral lines formed in solar prominences
    Leger, L.
    Paletou, F.
    ASTRONOMY & ASTROPHYSICS, 2009, 498 (03): : 869 - 875
  • [5] Fast 2D non-LTE radiative modelling of prominences -: Numerical methods and benchmark results
    Leger, L.
    Chevallier, L.
    Paletou, F.
    ASTRONOMY & ASTROPHYSICS, 2007, 470 (01): : 1 - 9
  • [6] Solar prominence diagnostics from non-LTE modelling of Mg II h&k line profiles
    Peat, A. W.
    Labrosse, N.
    Schmieder, B.
    Barczynski, K.
    ASTRONOMY & ASTROPHYSICS, 2021, 653 (653)
  • [7] 2D non-LTE modeling for axisymmetric winds -: Method and test cases
    Georgiev, L. N.
    Hillier, D. J.
    Zsargo, J.
    ASTRONOMY & ASTROPHYSICS, 2006, 458 (02) : 597 - 608
  • [8] Non-LTE Modeling of the Ba II D2 Line Resonance Polarization
    Faurobert, M.
    Bommier, V.
    Derouich, M.
    SOLAR POLARIZATION 5: IN HONOR OF JAN OLOF STENFLO, 2009, 405 : 35 - +
  • [9] Non-LTE Inversion of Spectropolarimetric and Spectroscopic Observations of a Small Active-region Filament Observed at the VTT
    Schwartz, P.
    Balthasar, H.
    Kuckein, C.
    Koza, J.
    Gomory, P.
    Rybak, J.
    Kucera, A.
    Heinzel, P.
    GROUND-BASED SOLAR OBSERVATIONS IN THE SPACE INSTRUMENTATION ERA, 2016, 504 : 205 - 208
  • [10] 3D NON-LTE LINE FORMATION IN THE SOLAR PHOTOSPHERE AND THE SOLAR OXYGEN ABUNDANCE
    KISELMAN, D
    NORDLUND, A
    ASTRONOMY & ASTROPHYSICS, 1995, 302 (02) : 578 - 586