THE SYMPLECTIC ARC ALGEBRA IS FORMAL

被引:14
作者
Abouzaid, Mohammed [1 ]
Smith, Ivan [2 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] Univ Cambridge, Ctr Math Sci, Cambridge, England
基金
美国国家科学基金会;
关键词
FLOER COHOMOLOGY; CATEGORIES; HOMOLOGY; SHEAVES;
D O I
10.1215/00127094-3449459
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a formality theorem for the Fukaya categories of the symplectic manifolds underlying symplectic Khovanov cohomology over fields of characteristic zero. The key ingredient is the construction of a degree-one Hochschild cohomology class-on a Floer A(infinity)-algebra associated. to the (k,k)-nilpotent slices y(k) obtained by counting holomorphic discs which satisfy a suitable conormal condition at infinity in a partial compactification (y) over bar (k). The space (y) over bar (k) is obtained as the Hilbert scheme of a partial compactification of the A(2k-1)-Milnor fiber. A sequel to this paper will prove formality of the symplectic cup and cap bimodules and infer that symplectic Khovanov cohomology and Khovanov cohomology have the same total rank over characteristic zero fields.
引用
收藏
页码:985 / 1060
页数:76
相关论文
共 43 条
[1]  
Abouzaid Mohammed, PREPRINT
[2]   A GEOMETRIC CRITERION FOR GENERATING THE FUKAYA CATEGORY [J].
Abouzaid, Mohammld .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2010, (112) :191-240
[3]  
[Anonymous], 2000, Complex analysis and algebraic geometry
[4]   Knot homology via derived categories of coherent sheaves, I: The sl(2)-case [J].
Cautis, Sabin ;
Kamnitzer, Joel .
DUKE MATHEMATICAL JOURNAL, 2008, 142 (03) :511-588
[5]   REAL HOMOTOPY THEORY OF KAHLER MANIFOLDS [J].
DELIGNE, P ;
GRIFFITHS, P ;
MORGAN, J ;
SULLIVAN, D .
INVENTIONES MATHEMATICAE, 1975, 29 (03) :245-274
[6]  
DESILVA V, 1998, THESIS OXFORD U
[7]   Recovering the good component of the Hilbert scheme [J].
Ekedahl, Torsten ;
Skjelnes, Roy .
ANNALS OF MATHEMATICS, 2014, 179 (03) :805-841
[8]   TRANSVERSALITY IN ELLIPTIC MORSE-THEORY FOR THE SYMPLECTIC ACTION [J].
FLOER, A ;
HOFER, H ;
SALAMON, D .
DUKE MATHEMATICAL JOURNAL, 1995, 80 (01) :251-292
[10]  
FUKAYA K., 2010, STUD ADV MATH, VI