The oceanic anthropogenic CO2 sink: Storage, air-sea fluxes, and transports over the industrial era

被引:225
作者
DeVries, Tim [1 ]
机构
[1] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA
关键词
LAND-USE; CARBON; MODEL; ACIDIFICATION; DISTRIBUTIONS; PERTURBATION; ASSIMILATION; VARIABILITY; SIMULATION; DIFFUSION;
D O I
10.1002/2013GB004739
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study presents a new estimate of the oceanic anthropogenic CO2 (C-ant) sink over the industrial era (1780 to present), from assimilation of potential temperature, salinity, radiocarbon, and CFC-11 observations in a global steady state ocean circulation inverse model (OCIM). This study differs from previous data-based estimates of the oceanic C-ant sink in that dynamical constraints on ocean circulation are accounted for, and the ocean circulation is explicitly modeled, allowing the calculation of oceanic C-ant storage, air-sea fluxes, and transports in a consistent manner. The resulting uncertainty of the OCIM-estimated C-ant uptake, transport, and storage is significantly smaller than the comparable uncertainty from purely data-based or model-based estimates. The OCIM-estimated oceanic C-ant storage is 160-166 PgC in 2012, and the oceanic C-ant uptake rate averaged over the period 2000-2010 is 2.6 PgC yr(-1) or about 30% of current anthropogenic CO2 emissions. This result implies a residual (primarily terrestrial) C-ant sink of about 1.6 PgC yr(-1) for the same period. The Southern Ocean is the primary conduit for C-ant entering the ocean, taking up about 1.1 PgC yr(-1) in 2012, which represents about 40% of the contemporary oceanic C-ant uptake. It is suggested that the most significant source of remaining uncertainty in the oceanic C-ant sink is due to potential variability in the ocean circulation over the industrial era.
引用
收藏
页码:631 / 647
页数:17
相关论文
共 64 条
[1]   A synthesis of carbon dioxide emissions from fossil-fuel combustion [J].
Andres, R. J. ;
Boden, T. A. ;
Breon, F. -M. ;
Ciais, P. ;
Davis, S. ;
Erickson, D. ;
Gregg, J. S. ;
Jacobson, A. ;
Marland, G. ;
Miller, J. ;
Oda, T. ;
Olivier, J. G. J. ;
Raupach, M. R. ;
Rayner, P. ;
Treanton, K. .
BIOGEOSCIENCES, 2012, 9 (05) :1845-1871
[2]  
[Anonymous], J NONPARAMETR STAT
[3]   Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean [J].
Bates, N. R. ;
Best, M. H. P. ;
Neely, K. ;
Garley, R. ;
Dickson, A. G. ;
Johnson, R. J. .
BIOGEOSCIENCES, 2012, 9 (07) :2509-2522
[4]  
Boden T., 2013, Global CO2 Emissions from Fossil-Fuel Burning, Cement Manufacture, and Gas Flaring: 1751-2010
[5]  
Bullister J., 2011, Atmospheric CFC-11, CFC-12, CFC-113, CCl4 and SF6 histories (1910-2011), DOI 10.3334/CDIAC/otg.CFC_Hist
[6]  
Canadell J., 2007, TERRESTRIAL ECOSYSTE, P59, DOI DOI 10.1007/978-3-540-32730-1_6
[7]  
Carbon In The Atlantic Ocean Group, 2009, CARB ARCT MED SEAS R
[8]  
Carbon In The Atlantic Ocean Group, 2010, CARB SO OC REG CARIN
[9]  
Carbon In The Atlantic Ocean Group, 2009, CARB ATL OC REG CARI
[10]  
Ciais P., 2013, Climate change 2013: The physical science basis. Contribution of working Group I to the fifth assessment report of the intergovernmental panel on climate change, DOI [DOI 10.1017/CBO9781107415324.015, 10.1017/CBO9781107415324.015]