Solvability of variational inequality problems

被引:33
作者
Han, J [1 ]
Huang, ZH
Fang, SC
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing, Peoples R China
[2] Tianjin Univ, Dept Math, Tianjin 300072, Peoples R China
[3] N Carolina State Univ, Raleigh, NC 27695 USA
基金
中国国家自然科学基金;
关键词
variational inequalities; complementarity problems; exceptional family of elements; existence theorems;
D O I
10.1023/B:JOTA.0000042593.74934.b7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper presents the new concept of exceptional family of elements for the variational inequality problem with a continuous function over a general unbounded closed convex set. We establish a characterization theorem that can be used to derive several new existence and compactness conditions on the solution set. Our findings generalize well-known results for various types of variational inequality problems. For a pseudomonotone variational inequality problem, our new existence conditions are both sufficient and necessary.
引用
收藏
页码:501 / 520
页数:20
相关论文
共 27 条
[1]  
Cottle RW., 1968, Linear Algebra Appl, V1, P103, DOI [DOI 10.1016/0024-3795(68)90052-9, 10.1016/0024-3795(68)90052-9]
[2]   Pseudomonotone variational inequality problems: Existence of solutions [J].
Crouzeix, JP .
MATHEMATICAL PROGRAMMING, 1997, 78 (03) :305-314
[3]  
Eaves B., 1971, Math. Program, V1, P68, DOI [10.1007/BF01584073, DOI 10.1007/BF01584073]
[4]   GENERALIZED VARIATIONAL-INEQUALITIES [J].
FANG, SC ;
PETERSON, EL .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1982, 38 (03) :363-383
[5]  
FANG SC, 2002, FUZZY OPTIM DECIS MA, V1, P113
[6]   FINITE-DIMENSIONAL VARIATIONAL INEQUALITY AND NONLINEAR COMPLEMENTARITY-PROBLEMS - A SURVEY OF THEORY, ALGORITHMS AND APPLICATIONS [J].
HARKER, PT ;
PANG, JS .
MATHEMATICAL PROGRAMMING, 1990, 48 (02) :161-220
[7]   ON SOME NON-LINEAR ELLIPTIC DIFFERENTIAL-FUNCTIONAL EQUATIONS [J].
HARTMAN, P ;
STAMPACCHIA, G .
ACTA MATHEMATICA UPPSALA, 1966, 115 (3-4) :271-+
[8]   Generalization of an existence theorem for variational inequalities [J].
Huang, ZH .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 118 (03) :567-585
[9]   Exceptional families of elements for continuous functions: Some applications to complementarity theory [J].
Isac, G ;
Carbone, A .
JOURNAL OF GLOBAL OPTIMIZATION, 1999, 15 (02) :181-196
[10]   Exceptional family of elements and the solvability of variational inequalities for unbounded sets in infinite dimensional Hilbert spaces [J].
Isac, G ;
Zhao, YB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 246 (02) :544-556