Force Control of Series Elastic Actuators-Driven Parallel Robot

被引:0
|
作者
Lee, Hyunwook [1 ]
Kwak, Suhui [1 ]
Oh, Sehoon [1 ]
机构
[1] DGIST, Dept Robotis Engn, Daegu 711785, South Korea
来源
2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) | 2018年
基金
新加坡国家研究基金会;
关键词
DESIGN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a novel parallel robot - Virtual Ground Robot (VGR) - that is driven by three Series Elastic Actuators (SEAs) to interact with a human. The proposed Virtual Ground Robot provides a virtual ground on which a human can stand on and interact in three directions: the pitch, the roll and the height directions. The most significant features of the proposed VGR are that 1) it is driven by RFSEAs (Reaction Force-sensing Series Elastic Actuator), and thus it can provide precise forces and torques, 2) the size of the VGR is small enough for a human to stand on with ease, and 3) it can generate torque/force large to support a weight of a human. Taking advantage of RFSEAs utilized in the proposed VGR, Spatial Force control algorithm is proposed in this paper. In order to design this controller, the motions of VGR are defined in the task space, the joint space and the RFSEA level. Based on the Kinematics, force control of VGR in the task level, which is named Spatial Force Control is designed and verified using experiments.
引用
收藏
页码:5401 / 5406
页数:6
相关论文
共 50 条
  • [1] Series Elastic Actuators-Driven Parallel Robot With Wide-Range Impedance Realization for Balance Assessment and Training
    Lee, Hyunwook
    Oh, Sehoon
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (06) : 4619 - 4630
  • [2] Adaptive Human-Robot Interaction Control for Robots Driven by Series Elastic Actuators
    Li, Xiang
    Pan, Yongping
    Chen, Gong
    Yu, Haoyong
    IEEE TRANSACTIONS ON ROBOTICS, 2017, 33 (01) : 169 - 182
  • [3] Region Control for Robots Driven by Series Elastic Actuators
    Li, Xiang
    Chen, Gong
    Pan, Yongping
    Yu, Haoyong
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 1102 - 1107
  • [4] A Rationale for Acceleration Feedback in Force Control of Series Elastic Actuators
    Calanca, Andrea
    Fiorini, Paolo
    IEEE TRANSACTIONS ON ROBOTICS, 2018, 34 (01) : 48 - 61
  • [5] lA survey on actuators-driven surgical robots
    Huu Minh Le
    Thanh Nho Do
    Phee, Soo Jay
    SENSORS AND ACTUATORS A-PHYSICAL, 2016, 247 : 323 - 354
  • [6] A Decentralized Force Controller Synthesis for Compliant Robots Driven by Series Elastic Actuators
    Sariyildiz, Emre
    Mutlu, Rahim
    Nozaki, Takahiro
    Murakami, Toshiyuki
    2019 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS (ICM), 2019, : 661 - 666
  • [7] Understanding Environment-Adaptive Force Control of Series Elastic Actuators
    Calanca, Andrea
    Fiorini, Paolo
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2018, 23 (01) : 413 - 423
  • [8] Human-Robot Interaction Force Control of Series Elastic Actuator-Driven Upper Limb Exoskeleton Robot
    Sun, Zhongbo
    Xu, Changxian
    Jin, Long
    Pang, Zaixiang
    Yu, Junzhi
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024,
  • [9] Human-Robot Interaction Control of Rehabilitation Robots With Series Elastic Actuators
    Yu, Haoyong
    Huang, Sunan
    Chen, Gong
    Pan, Yongping
    Guo, Zhao
    IEEE TRANSACTIONS ON ROBOTICS, 2015, 31 (05) : 1089 - 1100
  • [10] A Comparison Study on Observer-based Force Control of Series Elastic Actuators
    Kansizoglu, Ahmet Talha
    Sariyildiz, Emre
    Ugurlu, Barkan
    2018 IEEE 15TH INTERNATIONAL WORKSHOP ON ADVANCED MOTION CONTROL (AMC), 2018, : 411 - 416