Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial

被引:96
作者
Ebrahiminezhad, Alireza [1 ,2 ,3 ,4 ]
Bagheri, Mahboobeh [3 ,4 ]
Taghizadeh, Seyedeh-Masoumeh [3 ,4 ]
Berenjian, Aydin [5 ]
Ghasemi, Younes [3 ,4 ]
机构
[1] Fasa Univ Med Sci, Noncommunicable Dis Res Ctr, Fasa, Iran
[2] Fasa Univ Med Sci, Dept Med Biotechnol, Sch Med, Fasa, Iran
[3] Shiraz Univ Med Sci, Sch Pharm, Dept Pharmaceut Biotechnol, Shiraz, Iran
[4] Shiraz Univ Med Sci, Pharmaceut Sci Res Ctr, Shiraz, Iran
[5] Univ Waikato, Sch Engn, Fac Sci & Engn, Hamilton 3240, New Zealand
关键词
Ag nanoparticles; biosynthesis; bioreduction; Chlorella vulgaris; green synthesis; IRON-OXIDE NANOPARTICLES; GREEN SYNTHESIS; CHLORELLA-VULGARIS; ANTIBACTERIAL ACTIVITY; BIOSYNTHESIS; EXTRACT; CYTOTOXICITY; STABILIZATION; ATTACHMENT; TOXICITY;
D O I
10.1088/2043-6262/7/1/015018
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Secreted carbohydrates by Chlorella vulgaris cells were used for reducing and capping Silver nanoparticles (AgNPs). Oxygen-bearing functional groups on the carbohydrates found to be the main biochemical groups responsible for anchoring the metal nanoparticles. Transmission electron microscopy (TEM) micrographs showed that isotropic small particles with mean particles size of 7 nm were synthesized. Comparing the TEM results with DLS analysis revealed that the thickness of carbohydrate capping was about 2 nm. A zeta potential of +26 mV made the particles colloidally stable and desirable for anticancer and antimicrobial applications. The MIC against gram positive (Staphylococcus aureus) and gram negative bacteria (Escherichia coli) were determined to be 37.5 mu g ml(-1) and 9.4 mu g ml(-1), respectively. Treatment of Hep-G2 cells with 4.7 mu g ml(-1) AgNPs for 24 h reduced the cell viability to 61%. This concentration was also reduced the cell viability to 37% after 48 h of exposure.
引用
收藏
页数:8
相关论文
共 76 条
[1]   Positively charged imidazolium-based ionic liquid-protected silver nanoparticles: a promising disinfectant in root canal treatment [J].
Abbaszadegan, A. ;
Nabavizadeh, M. ;
Gholami, A. ;
Aleyasin, Z. S. ;
Dorostkar, S. ;
Saliminasab, M. ;
Ghasemi, Y. ;
Hemmateenejad, B. ;
Sharghi, H. .
INTERNATIONAL ENDODONTIC JOURNAL, 2015, 48 (08) :790-800
[2]   A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry [J].
Albalasmeh, Ammar A. ;
Berhe, Asmeret Asefaw ;
Ghezzehei, Teamrat A. .
CARBOHYDRATE POLYMERS, 2013, 97 (02) :253-261
[3]   An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement [J].
Alt, V ;
Bechert, T ;
Steinrücke, P ;
Wagener, M ;
Seidel, P ;
Dingeldein, E ;
Domann, E ;
Schnettler, R .
BIOMATERIALS, 2004, 25 (18) :4383-4391
[4]  
[Anonymous], 2011, Iran J Pharm Sci
[5]  
[Anonymous], 2010, RES J MICROBIOL, DOI DOI 10.3923/JM.2010.144.149
[6]   DBT Degradation Enhancement by Decorating Rhodococcus erythropolis IGST8 With Magnetic Fe3O4 Nanoparticles [J].
Ansari, F. ;
Grigoriev, P. ;
Libor, S. ;
Tothill, L. F. ;
Ramsden, J. J. .
BIOTECHNOLOGY AND BIOENGINEERING, 2009, 102 (05) :1505-1512
[7]  
Ansari M. A., 2011, Biology and Medicine, V3, P141
[8]   Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus [J].
Bfilainsa, KC ;
D'Souza, SF .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2006, 47 (02) :160-164
[9]   Biodiesel from microalgae [J].
Chisti, Yusuf .
BIOTECHNOLOGY ADVANCES, 2007, 25 (03) :294-306
[10]   Antibacterial Activity of pH-Dependent Biosynthesized Silver Nanoparticles against Clinical Pathogen [J].
Chitra, Kethirabalan ;
Annadurai, Gurusamy .
BIOMED RESEARCH INTERNATIONAL, 2014, 2014