Blow-up and critical exponents for nonlinear hyperbolic equations

被引:54
作者
Galaktionov, VA
Pohozaev, SI
机构
[1] Univ Bath, Sch Math Sci, Bath BA2 7AY, Avon, England
[2] VA Steklov Math Inst, Moscow 117966, Russia
[3] MV Keldysh Appl Math Inst, Moscow 125047, Russia
基金
英国工程与自然科学研究理事会;
关键词
semilinear wave equations; blow-up; energy estimates; critical exponents;
D O I
10.1016/S0362-546X(02)00311-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove nonexistence results for the Cauchy problem for the abstract hyperbolic equation in a Hanach space X, u(u) = f'(u), t > 0; u(0) = u(0), u(t)(0) = u(1), where f : X --> R is a C-1-function. Several applications to the second- and higher-order hyperbolic equations with local and nonlocal nonlinearities are presented. We also describe an approach to Kato's and John's critical exponents for the semilinear equations u(t) = Deltau + b(x, t)\u\(p), p > 1, which are responsible for phenomena of stability, unstability, blow-up and asymptotic behaviour. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:453 / 466
页数:14
相关论文
共 11 条
[1]  
ALINHAC S, 1995, BLOW UP NONLINEAR HY
[4]   INSTABILITY AND NONEXISTENCE OF GLOBAL SOLUTIONS TO NONLINEAR-WAVE EQUATIONS OF FORM PUTT = -AU + F(U) [J].
LEVINE, HA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 192 :1-21
[5]   NONEXISTENCE OF GLOBAL WEAK SOLUTIONS FOR CLASSES OF NONLINEAR-WAVE AND PARABOLIC EQUATIONS [J].
LEVINE, HA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1976, 55 (02) :329-334
[6]   THE ROLE OF CRITICAL EXPONENTS IN BLOWUP THEOREMS [J].
LEVINE, HA .
SIAM REVIEW, 1990, 32 (02) :262-288
[7]  
Ohta M., 1998, ADV MATH SCI APPL, V8, P901
[8]  
Ohta M., 1997, HOKKAIDO MATH J, V26, P115
[9]   Global existence, decay, and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings [J].
Ono, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 137 (02) :273-301