Machine-Learning Analysis to Predict the Exciton Valley Polarization Landscape of 2D Semiconductors

被引:31
作者
Tanaka, Kenya [1 ]
Hachiya, Kengo [1 ]
Zhang, Wenjin [1 ]
Matsuda, Kazunari [1 ]
Miyauchi, Yuhei [1 ]
机构
[1] Kyoto Univ, Inst Adv Energy, Kyoto 6110011, Japan
关键词
2D semiconductor; transition metal dichalcogenides; valleytronics; exciton; valley polarization; machine learning; random forest; MONOLAYER MOS2; DYNAMICS; PHOTOLUMINESCENCE; CLASSIFICATION; EMISSION;
D O I
10.1021/acsnano.9b04220
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We demonstrate the applicability of employing machine -learning-based analysis to predict the low-temperature exciton valley polarization landscape of monolayer tungsten diselenide (1L-WSe2) using positiondependent information extracted from its photoluminescence (PL) spectra at room temperature. We performed low- and room-temperature polarization -resolved PL mapping and used the obtained experimental data to create regression models for the prediction using the Random Forest machine -learning algorithm. The local information extracted from the room-temperature PL spectra and the low-temperature exciton valley polarization was used as the input and output data for the machine- learning process, respectively. The spatial distribution of the exciton valley polarization in a 1L-WSe2 sample that was not used for the learning of the decision trees was successfully predicted. Furthermore, we numerically obtained the degree of importance for each input variable and demonstrated that this parameter provides helpful information for examining the physics that shape the spatially heterogeneous valley polarization landscape of 1L-WSe2
引用
收藏
页码:12687 / 12693
页数:7
相关论文
共 54 条
[1]   Optimization of photonic crystal nanocavities based on deep learning [J].
Asano, Takashi ;
Noda, Susumu .
OPTICS EXPRESS, 2018, 26 (25) :32704-32716
[2]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]   Valley-selective circular dichroism of monolayer molybdenum disulphide [J].
Cao, Ting ;
Wang, Gang ;
Han, Wenpeng ;
Ye, Huiqi ;
Zhu, Chuanrui ;
Shi, Junren ;
Niu, Qian ;
Tan, Pingheng ;
Wang, Enge ;
Liu, Baoli ;
Feng, Ji .
NATURE COMMUNICATIONS, 2012, 3
[5]   Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling [J].
Carrete, Jesus ;
Li, Wu ;
Mingo, Natalio ;
Wang, Shidong ;
Curtarolo, Stefano .
PHYSICAL REVIEW X, 2014, 4 (01)
[6]   Layer dependence of graphene-diamene phase transition in epitaxial and exfoliated few-layer graphene using machine learning [J].
Cellini, Filippo ;
Lavini, Francesco ;
Berger, Claire ;
de Heer, Walt ;
Riedo, Elisa .
2D MATERIALS, 2019, 6 (03)
[7]   Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2 [J].
Chernikov, Alexey ;
Berkelbach, Timothy C. ;
Hill, Heather M. ;
Rigosi, Albert ;
Li, Yilei ;
Aslan, Ozgur Burak ;
Reichman, David R. ;
Hybertsen, Mark S. ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2014, 113 (07)
[8]   Ab Initio-Based Bond Order Potential to Investigate Low Thermal Conductivity of Stanene Nanostructures [J].
Cherukara, Mathew J. ;
Narayanan, Badri ;
Kinaci, Alper ;
Sasikumar, Kiran ;
Gray, Stephen K. ;
Chan, Maria K. Y. ;
Sankaranarayanan, Subramanian K. R. S. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (19) :3752-3759
[9]   Charged excitons in monolayer WSe2: Experiment and theory [J].
Courtade, E. ;
Semina, M. ;
Manca, M. ;
Glazov, M. M. ;
Robert, C. ;
Cadiz, F. ;
Wang, G. ;
Taniguchi, T. ;
Watanabe, K. ;
Pierre, M. ;
Escoffier, W. ;
Ivchenko, E. L. ;
Renucci, P. ;
Marie, X. ;
Amand, T. ;
Urbaszek, B. .
PHYSICAL REVIEW B, 2017, 96 (08)
[10]   Random forests for classification in ecology [J].
Cutler, D. Richard ;
Edwards, Thomas C., Jr. ;
Beard, Karen H. ;
Cutler, Adele ;
Hess, Kyle T. .
ECOLOGY, 2007, 88 (11) :2783-2792