Comparison of quiver varieties, loop Grassmannians and nilpotent cones in type A

被引:3
|
作者
Mirkovic, Ivan [1 ]
Vybornov, Maxim [2 ]
Krylov, Vasily [3 ,4 ,5 ]
机构
[1] Univ Massachusetts Amherst, Dept Math & Stat, Amherst, MA 01003 USA
[2] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Natl Res Univ Higher Sch Econ, Moscow, Russia
[4] Dept Math, 6 Usacheva st, Moscow 119048, Russia
[5] Skolkovo Inst Sci & Technol, Moscow, Russia
基金
美国国家科学基金会;
关键词
Quivervarieties; LoopGrassmannians; Nilpotentcones; LAGRANGIAN CONSTRUCTION; REPRESENTATIONS; SINGULARITIES; INSTANTONS; SHEAVES;
D O I
10.1016/j.aim.2022.108397
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In type A we find equivalences of geometries arising in three settings: Nakajima's ("framed") quiver varieties, conjugacy classes of matrices and loop Grassmannians. These are all given by explicit formulas. In particular, we embedd the framed quiver varieties into Beilinson-Drinfeld Grass-mannians. This provides a compactification of Nakajima varieties and a decomposition of affine Grassmannians into Nakajima varieties. As an application we provide a geometric version of symmetric and skew (GL(m), GL(n)) dualities.(c) 2022 Published by Elsevier Inc.
引用
收藏
页数:54
相关论文
共 17 条
  • [1] QUIVER GRASSMANNIANS, QUIVER VARIETIES AND THE PREPROJECTIVE ALGEBRA
    Savage, Alistair
    Tingley, Peter
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 251 (02) : 393 - 429
  • [2] Desingularizations of quiver Grassmannians via graded quiver varieties
    Keller, Bernhard
    Scherotzke, Sarah
    ADVANCES IN MATHEMATICS, 2014, 256 : 318 - 347
  • [3] Quiver Grassmannians and degenerate flag varieties
    Irelli, Giovanni Cerulli
    Feigin, Evgeny
    Reineke, Markus
    ALGEBRA & NUMBER THEORY, 2012, 6 (01) : 165 - 194
  • [4] Degenerate Affine Flag Varieties and Quiver Grassmannians
    Puetz, Alexander
    ALGEBRAS AND REPRESENTATION THEORY, 2022, 25 (01) : 91 - 119
  • [5] Generalized juggling patterns, quiver Grassmannians and affine flag varieties
    Feigin, Evgeny
    Lanini, Martina
    Putz, Alexander
    MATHEMATISCHE ZEITSCHRIFT, 2024, 308 (03)
  • [6] TYPE A QUIVER LOCI AND SCHUBERT VARIETIES
    Kinser, Ryan
    Rajchgot, Jenna
    JOURNAL OF COMMUTATIVE ALGEBRA, 2015, 7 (02) : 265 - 301
  • [7] ON THE NUMBER OF POINTS OF NILPOTENT QUIVER VARIETIES OVER FINITE FIELDS
    Bozec, Tristan
    Schiffmann, Olivier
    Vasserot, Eric
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (06): : 1501 - 1544
  • [8] Geometry of quiver Grassmannians of Dynkin type with applications to cluster algebras
    Irelli, Giovanni Cerulli
    REPRESENTATION THEORY - CURRENT TRENDS AND PERSPECTIVES, 2017, : 13 - 45
  • [9] On the vertex functions of type A quiver varieties
    Hunter Dinkins
    Letters in Mathematical Physics, 114
  • [10] Geometry of quiver Grassmannians of Kronecker type and applications to cluster algebras
    Irelli, Giovanni Cerulli
    Esposito, Francesco
    ALGEBRA & NUMBER THEORY, 2011, 5 (06) : 777 - 801