Repeated quantum error correction on a continuously encoded qubit by real-time feedback

被引:197
作者
Cramer, J. [1 ,2 ]
Kalb, N. [1 ,2 ]
Rol, M. A. [1 ,2 ]
Hensen, B. [1 ,2 ]
Blok, M. S. [1 ,2 ]
Markham, M. [3 ]
Twitchen, D. J. [3 ]
Hanson, R. [1 ,2 ]
Taminiau, T. H. [1 ,2 ]
机构
[1] Delft Univ Technol, QuTech, POB 5046, NL-2600 GA Delft, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci, POB 5046, Delft, Netherlands
[3] Element Six Innovat, Fermi Ave, Didcot OX11 0QR, Oxon, England
来源
NATURE COMMUNICATIONS | 2016年 / 7卷
基金
欧洲研究理事会;
关键词
SPIN COHERENCE TIME; ENTANGLEMENT; REALIZATION;
D O I
10.1038/ncomms11526
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Reliable quantum information processing in the face of errors is a major fundamental and technological challenge. Quantum error correction protects quantum states by encoding a logical quantum bit (qubit) in multiple physical qubits. To be compatible with universal fault-tolerant computations, it is essential that states remain encoded at all times and that errors are actively corrected. Here we demonstrate such active error correction on a continuously protected logical qubit using a diamond quantum processor. We encode the logical qubit in three long-lived nuclear spins, repeatedly detect phase errors by non-destructive measurements, and apply corrections by real-time feedback. The actively error-corrected qubit is robust against errors and encoded quantum superposition states are preserved beyond the natural dephasing time of the best physical qubit in the encoding. These results establish a powerful platform to investigate error correction under different types of noise and mark an important step towards fault-tolerant quantum information processing.
引用
收藏
页数:7
相关论文
共 38 条
[31]   Experimental Repetitive Quantum Error Correction [J].
Schindler, Philipp ;
Barreiro, Julio T. ;
Monz, Thomas ;
Nebendahl, Volckmar ;
Nigg, Daniel ;
Chwalla, Michael ;
Hennrich, Markus ;
Blatt, Rainer .
SCIENCE, 2011, 332 (6033) :1059-1061
[32]   Suppressing qubit dephasing using real-time Hamiltonian estimation [J].
Shulman, M. D. ;
Harvey, S. P. ;
Nichol, J. M. ;
Bartlett, S. D. ;
Doherty, A. C. ;
Umansky, V. ;
Yacoby, A. .
NATURE COMMUNICATIONS, 2014, 5
[33]   Tracking photon jumps with repeated quantum non-demolition parity measurements [J].
Sun, L. ;
Petrenko, A. ;
Leghtas, Z. ;
Vlastakis, B. ;
Kirchmair, G. ;
Sliwa, K. M. ;
Narla, A. ;
Hatridge, M. ;
Shankar, S. ;
Blumoff, J. ;
Frunzio, L. ;
Mirrahimi, M. ;
Devoret, M. H. ;
Schoelkopf, R. J. .
NATURE, 2014, 511 (7510) :444-+
[34]  
Taminiau TH, 2014, NAT NANOTECHNOL, V9, P171, DOI [10.1038/NNANO.2014.2, 10.1038/nnano.2014.2]
[35]   Quantum error correction for quantum memories [J].
Terhal, Barbara M. .
REVIEWS OF MODERN PHYSICS, 2015, 87 (02) :307-346
[36]   Quantum error correction in a solid-state hybrid spin register [J].
Waldherr, G. ;
Wang, Y. ;
Zaiser, S. ;
Jamali, M. ;
Schulte-Herbrueggen, T. ;
Abe, H. ;
Ohshima, T. ;
Isoya, J. ;
Du, J. F. ;
Neumann, P. ;
Wrachtrup, J. .
NATURE, 2014, 506 (7487) :204-+
[37]   29Si nuclear spins as a resource for donor spin qubits in silicon [J].
Wolfowicz, Gary ;
Mortemousque, Pierre-Andre ;
Guichard, Roland ;
Simmons, Stephanie ;
Thewalt, Mike L. W. ;
Itoh, Kohei M. ;
Morton, John J. L. .
NEW JOURNAL OF PHYSICS, 2016, 18
[38]  
Yeung TK, 2012, APPL PHYS LETT, V100, DOI [10.1063/1.4730401, 10.1063/1.4729401]