Repeated quantum error correction on a continuously encoded qubit by real-time feedback

被引:182
作者
Cramer, J. [1 ,2 ]
Kalb, N. [1 ,2 ]
Rol, M. A. [1 ,2 ]
Hensen, B. [1 ,2 ]
Blok, M. S. [1 ,2 ]
Markham, M. [3 ]
Twitchen, D. J. [3 ]
Hanson, R. [1 ,2 ]
Taminiau, T. H. [1 ,2 ]
机构
[1] Delft Univ Technol, QuTech, POB 5046, NL-2600 GA Delft, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci, POB 5046, Delft, Netherlands
[3] Element Six Innovat, Fermi Ave, Didcot OX11 0QR, Oxon, England
来源
NATURE COMMUNICATIONS | 2016年 / 7卷
基金
欧洲研究理事会;
关键词
SPIN COHERENCE TIME; ENTANGLEMENT; REALIZATION;
D O I
10.1038/ncomms11526
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Reliable quantum information processing in the face of errors is a major fundamental and technological challenge. Quantum error correction protects quantum states by encoding a logical quantum bit (qubit) in multiple physical qubits. To be compatible with universal fault-tolerant computations, it is essential that states remain encoded at all times and that errors are actively corrected. Here we demonstrate such active error correction on a continuously protected logical qubit using a diamond quantum processor. We encode the logical qubit in three long-lived nuclear spins, repeatedly detect phase errors by non-destructive measurements, and apply corrections by real-time feedback. The actively error-corrected qubit is robust against errors and encoded quantum superposition states are preserved beyond the natural dephasing time of the best physical qubit in the encoding. These results establish a powerful platform to investigate error correction under different types of noise and mark an important step towards fault-tolerant quantum information processing.
引用
收藏
页数:7
相关论文
共 38 条
  • [31] Experimental Repetitive Quantum Error Correction
    Schindler, Philipp
    Barreiro, Julio T.
    Monz, Thomas
    Nebendahl, Volckmar
    Nigg, Daniel
    Chwalla, Michael
    Hennrich, Markus
    Blatt, Rainer
    [J]. SCIENCE, 2011, 332 (6033) : 1059 - 1061
  • [32] Suppressing qubit dephasing using real-time Hamiltonian estimation
    Shulman, M. D.
    Harvey, S. P.
    Nichol, J. M.
    Bartlett, S. D.
    Doherty, A. C.
    Umansky, V.
    Yacoby, A.
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [33] Tracking photon jumps with repeated quantum non-demolition parity measurements
    Sun, L.
    Petrenko, A.
    Leghtas, Z.
    Vlastakis, B.
    Kirchmair, G.
    Sliwa, K. M.
    Narla, A.
    Hatridge, M.
    Shankar, S.
    Blumoff, J.
    Frunzio, L.
    Mirrahimi, M.
    Devoret, M. H.
    Schoelkopf, R. J.
    [J]. NATURE, 2014, 511 (7510) : 444 - +
  • [34] Taminiau TH, 2014, NAT NANOTECHNOL, V9, P171, DOI [10.1038/NNANO.2014.2, 10.1038/nnano.2014.2]
  • [35] Quantum error correction for quantum memories
    Terhal, Barbara M.
    [J]. REVIEWS OF MODERN PHYSICS, 2015, 87 (02) : 307 - 346
  • [36] Quantum error correction in a solid-state hybrid spin register
    Waldherr, G.
    Wang, Y.
    Zaiser, S.
    Jamali, M.
    Schulte-Herbrueggen, T.
    Abe, H.
    Ohshima, T.
    Isoya, J.
    Du, J. F.
    Neumann, P.
    Wrachtrup, J.
    [J]. NATURE, 2014, 506 (7487) : 204 - +
  • [37] 29Si nuclear spins as a resource for donor spin qubits in silicon
    Wolfowicz, Gary
    Mortemousque, Pierre-Andre
    Guichard, Roland
    Simmons, Stephanie
    Thewalt, Mike L. W.
    Itoh, Kohei M.
    Morton, John J. L.
    [J]. NEW JOURNAL OF PHYSICS, 2016, 18
  • [38] Yeung TK, 2012, APPL PHYS LETT, V100, DOI [10.1063/1.4730401, 10.1063/1.4729401]