Preparation and hydrogen storage of activated rayon-based carbon fibers with high specific surface area

被引:36
作者
Gao, Fen [1 ]
Zhao, Dong-Lin [1 ]
Li, Yan [2 ]
Li, Xing-Guo [2 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
[2] Peking Univ, Coll Chem & Mol Engn, State Key Lab Rare Earth Mat Chem & Applicat, Beijing 100871, Peoples R China
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Microporous materials; Chemical synthesis; Electron microscopy; Surface properties; GRAPHITE NANOFIBERS; ROOM-TEMPERATURE; NANOTUBES; ADSORPTION; NANOSTRUCTURES; PHYSISORPTION; NANOPARTICLES; ENERGY; GASES;
D O I
10.1016/j.jpcs.2009.11.017
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Activated carbon fibers were prepared from rayon-based carbon fibers by two step activations with steam and KOH treatments. Hydrogen storage properties of the activated rayon-based carbon fibers with high specific surface area and micropore volume have been investigated. SEM, XRD and Brunauer-Emmett-Teller (BET) were used to characterize the samples. The adsorption performance and porous structure were investigated by nitrogen adsorption isotherm at 77 K on the base of BET and density functional theory (DFT). The BET specific surface area and micropore volume of the activated rayon-based carbon fibers were 3144 m(2)/g and 0.744 m(3)/g, respectively. Hydrogen storage properties of the samples were measured at 77 and 298 K with pressure-composition isotherm (PCT) measuring system based on the volumetric method. The capacities of hydrogen storage of the activated rayon-based carbon fibers were 7.01 and 1.46 wt% at 77 and 298 K at 4 MPa, respectively. Possible mechanisms for hydrogen storage in the activated rayon-based carbon fibers are discussed. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:444 / 447
页数:4
相关论文
共 31 条
[1]  
[Anonymous], 2003, Mater. Today, DOI [10.1016/S1369-7021(03)00922-2, DOI 10.1016/S1369-7021(03)00922-2]
[2]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[3]   Improved hydrogen storage properties of Ti-doped sodium alanate using titanium nanoparticles as doping agents [J].
Bogdanovic, B ;
Felderhoff, M ;
Kaskel, S ;
Pommerin, A ;
Schlichte, K ;
Schüth, F .
ADVANCED MATERIALS, 2003, 15 (12) :1012-+
[4]   Studies into the storage of hydrogen in carbon nanofibers: Proposal of a possible reaction mechanism [J].
Browning, DJ ;
Gerrard, ML ;
Lakeman, JB ;
Mellor, IM ;
Mortimer, RJ ;
Turpin, MC .
NANO LETTERS, 2002, 2 (03) :201-205
[5]   Chemisorptions of gases on iron synthetic ammonia catalysts [J].
Brunauer, S ;
Emmett, PH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1940, 62 :1732-1746
[6]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[7]   Molecular simulation of novel carbonaceous materials for hydrogen storage [J].
Cao, DP ;
Feng, PY ;
Wu, JZ .
NANO LETTERS, 2004, 4 (08) :1489-1492
[8]   Hydrogen storage in graphite nanofibers [J].
Chambers, A ;
Park, C ;
Baker, RTK ;
Rodriguez, NM .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (22) :4253-4256
[9]   High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures [J].
Chen, P ;
Wu, X ;
Lin, J ;
Tan, KL .
SCIENCE, 1999, 285 (5424) :91-93
[10]   Interaction of hydrogen with metal nitrides and imides [J].
Chen, P ;
Xiong, ZT ;
Luo, JZ ;
Lin, JY ;
Tan, KL .
NATURE, 2002, 420 (6913) :302-304