Observations regarding inclusions in the growth of Cs2HfCl6 single crystal scintillators

被引:12
作者
Delzer, C. [1 ,2 ,3 ]
Zhuravleva, M. [2 ,3 ]
Stand, L. [3 ]
Melcher, C. [1 ,2 ,3 ]
Cherepy, N. [4 ]
Payne, S. [4 ]
Sanner, R. [4 ]
Hayward, J. P. [1 ]
机构
[1] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA
[2] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[3] Univ Tennessee, Scintillat Mat Res Ctr, Knoxville, TN USA
[4] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
Radiation detection; Bridgman technique; Cesium hafnium chloride; Chloride; Scintillator materials; Optical materials;
D O I
10.1016/j.jcrysgro.2019.125336
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Cs2HfCl6 (CHC) is a promising high density, high-Z, non-hygroscopic, and high energy resolution scintillator. In CHC, many crystals have CsCl inclusions that form during growth. In this paper, we investigate how material synthesis, growth rate, and thermal gradient affect the formation of CsCl inclusions and their effect on scintillation performance. First, precursor material was made through a methanol synthesis process both with and without hydrochlorination. Next, five crystals were grown using Bridgman method, at growth rates of 1 or 0.5 mm/h, and thermal gradients of 21 degrees C or 34 degrees C per millimeter. The best overall performance was observed in a 22 mm diameter crystal produced using hydrochlorination which was grown at 1 mm/h in a thermal gradient of 34 degrees C per millimeter. It had a light yield of 36,000 photons/MeV and an energy resolution of 4.0% at 662 keV. We have also shown that poorer scintillation performance in the lower quality crystals is most likely due to reduced light collection caused by a higher concentration of inclusions.
引用
收藏
页数:7
相关论文
共 19 条
[1]  
[Anonymous], [No title captured]
[2]  
[Anonymous], [No title captured]
[3]  
[Anonymous], [No title captured]
[4]   Cesium hafnium chloride: A high light yield, non-hygroscopic cubic crystal scintillator for gamma spectroscopy [J].
Burger, Arnold ;
Rowe, Emmanuel ;
Groza, Michael ;
Figueroa, Kristle Morales ;
Cherepy, Nerine J. ;
Beck, Patrick R. ;
Hunter, Steven ;
Payne, Stephen A. .
APPLIED PHYSICS LETTERS, 2015, 107 (14)
[5]   Pulse-shape discrimination with Cs2HfCl6 crystal scintillator [J].
Cardenas, C. ;
Burger, A. ;
Goodwin, B. ;
Groza, M. ;
Laubenstein, M. ;
Nagorny, S. ;
Rowe, E. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2017, 869 :63-67
[6]   IMPROVEMENT OF GROWTH-PARAMETERS FOR BRIDGMAN-GROWN INSE CRYSTALS [J].
CHEVY, A .
JOURNAL OF CRYSTAL GROWTH, 1984, 67 (01) :119-124
[7]   Design of a facility for measuring scintillator non-proportionality [J].
Choong, W. -S. ;
Vetter, K. M. ;
Moses, W. W. ;
Hull, G. ;
Payne, S. A. ;
Cherepy, N. J. ;
Valentine, J. D. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2008, 55 (03) :1753-1758
[8]  
FAN SJ, 1990, J CRYST GROWTH, V99, P811, DOI 10.1016/S0022-0248(08)80031-0
[9]   Reducing melt inclusion by submerged heater or baffle for optical crystal growth [J].
Fang, Haisheng ;
Zheng, Lili ;
Zhang, Hui ;
Hong, Yong ;
Deng, Qun .
CRYSTAL GROWTH & DESIGN, 2008, 8 (06) :1840-1848
[10]   Energy nonlinearity in radiation detection materials: Causes and consequences [J].
Jaffe, J. E. ;
Jordan, D. V. ;
Peurrung, A. J. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 570 (01) :72-83