Statistical estimation of composite risk functionals and risk optimization problems

被引:44
作者
Dentcheva, Darinka [1 ]
Penev, Spiridon [2 ]
Ruszczynski, Andrzej [3 ]
机构
[1] Stevens Inst Technol, Dept Math Sci, Hoboken, NJ 07030 USA
[2] Univ New South Wales, Sch Math & Stat, Dept Stat, Sydney, NSW 2052, Australia
[3] Rutgers State Univ, Dept Management Sci & Informat Syst, New Brunswick, NJ 08854 USA
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
Risk measures; Composite functionals; Central limit theorem; STOCHASTIC-DOMINANCE; MODELS;
D O I
10.1007/s10463-016-0559-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We address the statistical estimation of composite functionals which may be nonlinear in the probability measure. Our study is motivated by the need to estimate coherent measures of risk, which become increasingly popular in finance, insurance, and other areas associated with optimization under uncertainty and risk. We establish central limit theorems for composite risk functionals. Furthermore, we discuss the asymptotic behavior of optimization problems whose objectives are composite risk functionals and we establish a central limit formula of their optimal values when an estimator of the risk functional is used. While the mathematical structures accommodate commonly used coherent measures of risk, they have more general character, which may be of independent interest.
引用
收藏
页码:737 / 760
页数:24
相关论文
共 40 条
[1]  
[Anonymous], N AM ACTUAR J
[2]   Coherent measures of risk [J].
Artzner, P ;
Delbaen, F ;
Eber, JM ;
Heath, D .
MATHEMATICAL FINANCE, 1999, 9 (03) :203-228
[3]   CENTRAL LIMIT THEOREMS FOR LAW-INVARIANT COHERENT RISK MEASURES [J].
Belomestny, Denis ;
Kraetschmer, Volker .
JOURNAL OF APPLIED PROBABILITY, 2012, 49 (01) :1-21
[4]   An old-new concept of convex risk measures: The optimized certainty equivalent [J].
Ben-Tal, Aharon ;
Teboulle, Marc .
MATHEMATICAL FINANCE, 2007, 17 (03) :449-476
[5]   A modified functional delta method and its application to the estimation of risk functionals [J].
Beutner, Eric ;
Zahle, Henryk .
JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (10) :2452-2463
[6]  
Bonnans J.F., 2013, PERTURBATION ANAL OP
[7]   Estimating conditional tail expectation with actuarial applications in view [J].
Brazauskas, Vytaras ;
Jones, Bruce L. ;
Puri, Madan L. ;
Zitikis, Ricardas .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (11) :3590-3604
[8]   RISK MEASURES ON ORLICZ HEARTS [J].
Cheridito, Patrick ;
Li, Tianhui .
MATHEMATICAL FINANCE, 2009, 19 (02) :189-214
[9]   Mean-risk tests of stochastic dominance [J].
Dentcheva, Darinka ;
Stock, Gregory J. ;
Rekeda, Ludmyla .
STATISTICS & RISK MODELING, 2011, 28 (02) :97-118
[10]   Risk preferences on the space of quantile functions [J].
Dentcheva, Darinka ;
Ruszczynski, Andrzej .
MATHEMATICAL PROGRAMMING, 2014, 148 (1-2) :181-200