On the non-abelian tensor product of Lie algebras

被引:21
作者
Salemkar, Ali Reza [1 ]
Tavallaee, Hamid [2 ]
Mohammadzadeh, Hamid [2 ]
Edalatzadeh, Behrouz [1 ]
机构
[1] Shahid Beheshti Univ GC, Fac Math Sci, Tehran, Iran
[2] Iran Univ Technol, Fac Math Sci, Tehran, Iran
关键词
non-abelian tensor product; non-abelian tensor square; Engel Lie algebra;
D O I
10.1080/03081080802590834
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ellis (G. Ellis, A non-abelian tensor product of Lie algebras, Glasgow Math. J. 39 (1991), pp. 101-120.) introduced the notion of the non-abelian tensor product L circle times K for a pair of Lie algebras L, K and investigated some of its fundamental properties. In this article, we study some common properties between Lie algebras and their tensor products, and present some bounds on the nilpotency class and solvability length of L circle times K, provided such information is given on L or K. Also, we give some upper and lower bounds for the dimension of L circle times K if L and K are finite-dimensional nilpotent Lie algebras and ideals of a single Lie algebra.
引用
收藏
页码:333 / 341
页数:9
相关论文
共 7 条
[1]   On characterizing nilpotent Lie algebras by their multipliers [J].
Batten, P ;
Moneyhun, K ;
Stitzinger, E .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (14) :4319-4330
[2]  
Ellis G., 1991, GLASG MATH J, V39, P101
[3]  
Inassaridze N., 2002, EXTRACTA MATH, V17, P281
[4]  
Moneyhun K., 1994, ALGEBRAS GROUPS GEOM, V11, P9
[5]  
Rocco N. R., 1991, Bol. Soc. Brasil Mat., V22, P63
[6]   GENERATORS OF A NILPOTENT NON-ASSOCIATIVE ALGEBRA [J].
TOWERS, DA .
QUARTERLY JOURNAL OF MATHEMATICS, 1971, 22 (88) :545-&
[7]   On the nilpotency class and solvability length of nonabelian tensor products of groups [J].
Visscher, MP .
ARCHIV DER MATHEMATIK, 1999, 73 (03) :161-171