A two-dimensional diffusion coefficient determination problem for the time-fractional equation

被引:28
作者
Durdiev, Durdimurod K. [1 ]
Rahmonov, Askar A. [2 ]
Bozorov, Zavqiddin R. [1 ]
机构
[1] Acad Sci Uzbek, Bukhara Branch, Inst Math, Bukhara, Uzbekistan
[2] Bukhara State Univ, Dept Math, Bukhara, Uzbekistan
关键词
diffusion equation; Gerasimov– Caputo fractional derivative; integral equation; inverse problem; Hö lder space; INVERSE PROBLEM; THERMAL MEMORY;
D O I
10.1002/mma.7442
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider two-dimensional inverse problem for a fractional diffusion equation. The inverse problem is reduced to the equivalent integral equation. For solving this equation, the contracted mapping principle is applied. The local existence and global uniqueness results are proven. Also, the stability estimate is obtained.
引用
收藏
页码:10753 / 10761
页数:9
相关论文
共 21 条
[1]  
Babenko YI., 1986, HEAT MASS TRANSFER
[2]  
Caputo M., 1971, Rivista del Nuovo Cimento, V1, P161, DOI 10.1007/BF02820620
[3]   Problem of Determining the Thermal Memory of a Conducting Medium [J].
Durdiev, D. K. ;
Zhumaev, Zh Zh .
DIFFERENTIAL EQUATIONS, 2020, 56 (06) :785-796
[4]  
Durdiev DK, 2019, METHODS FUNCT ANAL T, V25, P219
[5]   Inverse problem of determining the kernel in an integro-differential equation of parabolic type [J].
Durdiev, D. K. ;
Rashidov, A. Sh. .
DIFFERENTIAL EQUATIONS, 2014, 50 (01) :110-116
[6]  
Durdiev DK., 2020, ARXIV200910594V1MATH
[7]   Cauchy problem for fractional diffusion equations [J].
Eidelman, SD ;
Kochubei, AN .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (02) :211-255
[8]  
Gorenflo R., 1995, Transform Methods and Special Functions, P61
[9]  
Gorenflo R., 1997, FRACTIONAL CALCULUS, P223, DOI DOI 10.1007/978-3-7091-2664-6_5
[10]   Inverse time-dependent source problems for the heat equation with nonlocal boundary conditions [J].
Hazanee, A. ;
Lesnic, D. ;
Ismailov, M. I. ;
Kerimov, N. B. .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 346 :800-815