Evaluation of the susceptibility of neurons and neural stem/progenitor cells derived from human induced pluripotent stem cells to anticancer drugs

被引:5
|
作者
Fukusumi, Hayato [1 ]
Handa, Yukako [2 ]
Shofuda, Tomoko [1 ]
Kanemura, Yonehiro [2 ,3 ,4 ]
机构
[1] Natl Hosp Org Osaka Natl Hosp, Inst Clin Res, Dept Biomed Res & Innovat, Div Stem Cell Res, Osaka 5400006, Japan
[2] Natl Hosp Org Osaka Natl Hosp, Inst Clin Res, Dept Biomed Res & Innovat, Div Regenerat Med, Osaka 5400006, Japan
[3] Natl Hosp Org Osaka Natl Hosp, Dept Neurosurg, Osaka 5400006, Japan
[4] Keio Univ, Dept Physiol, Sch Med, Tokyo 1608582, Japan
关键词
Human induced pluripotent stem cell; Neural stem/progenitor cell; Neuron; Anticancer drug; Toxicology; IN-VITRO; COGNITIVE DYSFUNCTION; DIFFERENTIATION; NEUROTOXICITY; INHIBITION; PLATFORM;
D O I
10.1016/j.jphs.2019.08.002
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Various chemicals, including pharmaceuticals, can induce acute or delayed neurotoxicity in humans. Because isolation of human primary neurons is extremely difficult, toxicity tests for these agents have been performed using in vivo or in vitro models. Human induced pluripotent stem cells (hiPSCs) can be used to establish hiPSC-derived neural stem/progenitor cells (hiPSC-NSPCs), which can then be used to obtain hiPSC-neurons. In this study, we differentiated hiPSC-NSPCs into neurons and evaluated the susceptibility of hiPSC-neurons and parental hiPSC-NSPCs to anticancer drugs in vitro by ATP assay and immunocytostaining. The hiPSC-neurons were more resistant to anticancer drugs than the parental hiPSC-NSPCs. In the toxicity tests, high-dose cisplatin reduced the levels of ELAVL3/4, a neuronal marker, in the hiPSC-neurons. These results suggest that our methodology is potentially applicable for efficient determination of the toxicity of any drug to hiPSC-neurons. (C) 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of Japanese Pharmacological Society.
引用
收藏
页码:331 / 336
页数:6
相关论文
共 50 条
  • [21] Pericytes Derived from Human Pluripotent Stem Cells
    Jamieson, John
    Macklin, Bria
    Gerecht, Sharon
    PERICYTE BIOLOGY - NOVEL CONCEPTS, 2018, 1109 : 111 - 124
  • [22] Generation of Retinal Progenitor Cells from Human Induced Pluripotent Stem Cell-Derived Spherical Neural Mass
    Yun, Cheolmin
    Oh, Jaeryung
    Lee, Boram
    Lee, Ja-Myong
    Ariunaa, Togloom
    Huh, Kuhl
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2017, 14 (01) : 39 - 47
  • [23] Neural progenitor cells from human induced pluripotent stem cells generated less autogenous immune response
    Huang Ke
    Liu PengFei
    Li Xiang
    Chen ShuBin
    Wang LiHui
    Qin Li
    Su ZhengHui
    Huang WenHao
    Liu JuLi
    Jia Bei
    Liu Jie
    Cai JingLei
    Pei DuanQing
    Pan GuangJin
    SCIENCE CHINA-LIFE SCIENCES, 2014, 57 (02) : 162 - 170
  • [24] Cell-Surface Marker Signatures for the Isolation of Neural Stem Cells, Glia and Neurons Derived from Human Pluripotent Stem Cells
    Yuan, Shauna H.
    Martin, Jody
    Elia, Jeanne
    Flippin, Jessica
    Paramban, Rosanto I.
    Hefferan, Mike P.
    Vidal, Jason G.
    Mu, Yangling
    Killian, Rhiannon L.
    Israel, Mason A.
    Emre, Nil
    Marsala, Silvia
    Marsala, Martin
    Gage, Fred H.
    Goldstein, Lawrence S. B.
    Carson, Christian T.
    PLOS ONE, 2011, 6 (03):
  • [25] New Maintenance Culture Method for Intestinal Stem Cells Derived from Human Induced Pluripotent Stem Cells
    Mizuno, Shota
    Jinnoh, Yumi
    Arita, Ayaka
    Qiu, Shimeng
    Hashita, Tadahiro
    Hori, Eisei
    Iwao, Takahiro
    Matsunaga, Tamihide
    BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2024, 47 (01) : 120 - 129
  • [26] Trophoblast lineage cells derived from human induced pluripotent stem cells
    Chen, Ying
    Wang, Kai
    Chandramouli, Gadisetti V. R.
    Knott, Jason G.
    Leach, Richard
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2013, 436 (04) : 677 - 684
  • [27] Ultrastructural Organization of Ventral Mesencephalic Neurons Derived from Human Induced Pluripotent Stem Cells
    Kutukova K.A.
    Frumkina L.E.
    Ivanov M.V.
    Novosadova E.V.
    Simonova V.V.
    Antonov S.A.
    Grivennikov I.A.
    Illarioshkin S.N.
    Khaspekov L.G.
    Human Physiology, 2020, 46 (8) : 886 - 894
  • [28] Highly efficient methods to obtain homogeneous dorsal neural progenitor cells from human and mouse embryonic stem cells and induced pluripotent stem cells
    Zhang, Meixiang
    Ngo, Justine
    Pirozzi, Filomena
    Sun, Ying-Pu
    Wynshaw-Boris, Anthony
    STEM CELL RESEARCH & THERAPY, 2018, 9
  • [29] Human Neural Crest Stem Cells Derived from Human ESCs and Induced Pluripotent Stem Cells: Induction, Maintenance, and Differentiation into Functional Schwann Cells
    Liu, Qiuyue
    Spusta, Steven C.
    Mi, Ruifa
    Lassiter, Rhonda N. T.
    Stark, Michael R.
    Hoeke, Ahmet
    Rao, Mahendra S.
    Zeng, Xianmin
    STEM CELLS TRANSLATIONAL MEDICINE, 2012, 1 (04) : 266 - 278
  • [30] Derivation of Airway Basal Stem Cells from Human Pluripotent Stem Cells
    Hawkins, Finn J.
    Suzuki, Shingo
    Beermann, Mary Lou
    Barilla, Cristina
    Wang, Ruobing
    Villacorta-Martin, Carlos
    Berical, Andrew
    Jean, J. C.
    Le Suer, Jake
    Matte, Taylor
    Simone-Roach, Chantelle
    Tang, Yang
    Schlaeger, Thorsten M.
    Crane, Ana M.
    Matthias, Nadine
    Huang, Sarah X. L.
    Randell, Scott H.
    Wu, Joshua
    Spence, Jason R.
    Carraro, Gianni
    Stripp, Barry R.
    Rab, Andras
    Sorsher, Eric J.
    Horani, Amjad
    Brody, Steven L.
    Davis, Brian R.
    Kotton, Darrell N.
    CELL STEM CELL, 2021, 28 (01) : 79 - +