Predicting monthly streamflow using artificial neural networks and wavelet neural networks models

被引:13
作者
Yilmaz, Muhammet [1 ]
Tosunoglu, Fatih [1 ]
Kaplan, Nur Huseyin [2 ]
Unes, Fatih [3 ]
Hanay, Yusuf Sinan [4 ]
机构
[1] Erzurum Tech Univ, Dept Civil Engn, Erzurum, Turkey
[2] Erzurum Tech Univ, Dept Elect & Elect Engn, Erzurum, Turkey
[3] Iskenderun Tech Univ, Dept Civil Engn, Antakya, Turkey
[4] Akdeniz Univ, Dept Comp Engn, Antalya, Turkey
关键词
Additive wavelet transform; Discrete wavelet transform; Artificial neural networks; Monthly streamflow; Prediction; SUSPENDED SEDIMENT DATA; DOMINANT PERIODICITIES; IMAGE FUSION; SHORT-TERM; TRANSFORMS; FUZZY; TRENDS; ANN; PRECIPITATION; TEMPERATURE;
D O I
10.1007/s40808-022-01403-9
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Improving predicting methods for streamflow series is an important task for the water resource planning, management, and agriculture process. This study demonstrates the development and effectiveness of a new hybrid model for streamflow predicting. In the present study, artificial neural networks (ANNs) coupled with wavelet transform, namely Additive Wavelet Transform (AWT), are proposed. Comparative analyses of Discrete wavelet transform (DWT) based ANN and conventional ANN techniques with the proposed method were presented. The analysis of these models was performed with monthly streamflow series for four stations on the coruh Basin, which is located in northeastern Turkey. The Bayesian regularization backpropagation training algorithm was employed for the optimization of the ANN network. The predicted results of the models were analyzed by the root mean square error (RMSE), Akaike information criterion (AIC), and coefficient of determination (R-2). The obtained revealed that the proposed hybrid model represents significant accuracy compared to other models, and thus it can be a useful alternative approach for predicting studies.
引用
收藏
页码:5547 / 5563
页数:17
相关论文
共 57 条
[1]   Assessment of neuro-fuzzy approach based different wavelet families for daily flow rates forecasting [J].
Abda, Zaki ;
Chettih, Mohamed ;
Zerouali, Bilel .
MODELING EARTH SYSTEMS AND ENVIRONMENT, 2021, 7 (03) :1523-1538
[2]   Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada [J].
Adamowski, Jan ;
Chan, Hiu Fung ;
Prasher, Shiv O. ;
Ozga-Zielinski, Bogdan ;
Sliusarieva, Anna .
WATER RESOURCES RESEARCH, 2012, 48
[3]   A wavelet neural network conjunction model for groundwater level forecasting [J].
Adamowski, Jan ;
Chan, Hiu Fung .
JOURNAL OF HYDROLOGY, 2011, 407 (1-4) :28-40
[4]   Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds [J].
Adamowski, Jan ;
Sun, Karen .
JOURNAL OF HYDROLOGY, 2010, 390 (1-2) :85-91
[5]  
AKAIKE H, 1981, CC/ENG TECH APPL SCI, P22
[6]   Model selection in neural networks [J].
Anders, U ;
Korn, O .
NEURAL NETWORKS, 1999, 12 (02) :309-323
[7]   Using wavelet transforms to estimate surface temperature trends and dominant periodicities in Iran based on gridded reanalysis data [J].
Araghi, A. ;
Baygi, M. Mousavi ;
Adamowski, J. ;
Malard, J. ;
Nalley, D. ;
Hasheminia, S. M. .
ATMOSPHERIC RESEARCH, 2015, 155 :52-72
[8]   Application of ANN model to predict the sediment removal efficiency of silt extractor [J].
Athar, Mohammad ;
Ayaz, Md. .
MODELING EARTH SYSTEMS AND ENVIRONMENT, 2022, 8 (03) :3193-3199
[9]   Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models [J].
Belayneh, A. ;
Adamowski, J. ;
Khalil, B. ;
Ozga-Zielinski, B. .
JOURNAL OF HYDROLOGY, 2014, 508 :418-429
[10]   Daily streamflow modelling using autoregressive moving average and artificial neural networks models: case study of Coruh basin, Turkey [J].
Can, Ibrahim ;
Tosunoglu, Fatih ;
Kahya, Ercan .
WATER AND ENVIRONMENT JOURNAL, 2012, 26 (04) :567-576