Plasma electrolytic oxidation of a zirconium alloy under AC conditions

被引:77
作者
Matykina, E. [1 ]
Arrabal, R. [1 ]
Skeldon, P. [1 ]
Thompson, G. E. [1 ]
Wang, P. [1 ]
Wood, P. [1 ]
机构
[1] Univ Manchester, Ctr Corros & Protect, Sch Mat, Manchester M60 1QD, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Zirconium; Zirconium oxide; Plasma electrolytic oxidation; ANODIC OXIDE-FILMS; ELECTROCHEMICAL-BEHAVIOR; IMPEDANCE SPECTROSCOPY; DISSOLUTION BEHAVIOR; CERAMIC COATINGS; TI ALLOY; GROWTH; CORROSION; ALUMINUM; ZR;
D O I
10.1016/j.surfcoat.2009.11.042
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The microstructures of zirconia coatings formed by plasma electrolytic oxidation of a zirconium alloy. Zirlo, under AC conditions in an alkaline silicate electrolyte have been examined by scanning and transmission electron microscopies. The coatings are shown to consist of three layers. The innermost barrier layer is relatively thin, up to 500 nm in a 100 mu m-thick coating formed for 3600 s. The intermediate layer, constituting the main part of the coatings. consists primarily of monoclinic and tetragonal zirconia. The outer, loose layer is rich in silicon species and constitutes a reduced proportion of the coating thickness at increased time of treatment. The Porous intermediate and outer layers are readily permeated by the electrolyte. The formation of the coating accounts for <27% of the anodic charge passed during the treatment. (C) 2009 Elsevier B.V. All rights reserved
引用
收藏
页码:2142 / 2151
页数:10
相关论文
共 46 条
[1]   Characterization of AC PEO coatings on magnesium alloys [J].
Arrabal, R. ;
Matykina, E. ;
Hashimoto, T. ;
Skeldon, P. ;
Thompson, G. E. .
SURFACE & COATINGS TECHNOLOGY, 2009, 203 (16) :2207-2220
[2]   Coating formation by plasma electrolytic oxidation on ZC71/SiC/12p-T6 magnesium metal matrix composite [J].
Arrabal, R. ;
Matykina, E. ;
Skeldon, P. ;
Thompson, G. E. .
APPLIED SURFACE SCIENCE, 2009, 255 (09) :5071-5078
[3]   Corrosion, erosion and erosion-corrosion performance of plasma electrolytic oxidation (PEO) deposited Al2O3 coatings [J].
Barik, RC ;
Wharton, JA ;
Wood, RJK ;
Stokes, KR ;
Jones, RL .
SURFACE & COATINGS TECHNOLOGY, 2005, 199 (2-3) :158-167
[4]   Influence of electrolyte on corrosion properties of plasma electrolytic conversion coated magnesium alloys [J].
Blawert, C. ;
Heitmann, V. ;
Dietzel, W. ;
Nykyforchyn, H. M. ;
Klapkiv, M. D. .
SURFACE & COATINGS TECHNOLOGY, 2007, 201 (21) :8709-8714
[5]   Porosity in plasma electrolytic oxide coatings [J].
Curran, JA ;
Clyne, TW .
ACTA MATERIALIA, 2006, 54 (07) :1985-1993
[6]   MIGRATION OF METAL AND OXYGEN DURING ANODIC FILM FORMATION [J].
DAVIES, JA ;
DOMEIJ, B ;
PRINGLE, JPS ;
BROWN, F .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1965, 112 (07) :675-&
[7]   Effect of different acid anions on kinetics of the formation and dissolution behavior of anodic zirconium oxide [J].
El-Mahdy, GA ;
Mahmoud, SS .
CORROSION, 1998, 54 (05) :354-361
[8]   KINETIC-STUDIES OF THE DISSOLUTION BEHAVIOR OF ANODIC OXIDE-FILMS ON ZR IN H2SO4 [J].
ELBASIOUNY, MS ;
MAZHAR, AA ;
HEAKAL, FE ;
AMEER, MA .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1983, 147 (1-2) :181-191
[9]   Electrochemical impedance simulation of a metal oxide heterostructure/electrolyte interface: A review [J].
Gnedenkov, SV ;
Sinebryukhov, SL ;
Sergienko, VI .
RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2006, 42 (03) :197-211
[10]   Anticorrosion, antiscale coatings obtained on the surface of titanium alloys by microarc oxidation method and used in seawater [J].
Gnedenkov, SV ;
Gordienko, PS ;
Sinebrukhov, SL ;
Khrisanphova, OA ;
Skorobogatova, TM .
CORROSION, 2000, 56 (01) :24-31