Random projections fuzzy c-means (RPFCM) for big data clustering

被引:0
|
作者
Popescu, Mihail [1 ]
Keller, James [2 ]
Bezdek, James [3 ]
Zare, Alina [2 ]
机构
[1] Univ Missouri, HMI Dept, Columbia, MO USA
[2] Univ Missouri, ECE Dept, Columbia, MO USA
[3] Univ Missouri, Columbia, MO USA
来源
2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015) | 2015年
关键词
big data; dimensionality reduction; fuzzy c-means clustering; FCM; ensemble FCM; random projections;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Many contemporary biomedical applications such as physiological monitoring, imaging, and sequencing produce large amounts of data that require new data processing and visualization algorithms. Algorithms such as principal component analysis (PCA), singular value decomposition and random projections (RP) have been proposed for dimensionality reduction. In this paper we propose a new random projection version of the fuzzy c-means (FCM) clustering algorithm denoted as RPFCM that has a different ensemble aggregation strategy than the one previously proposed, denoted as ensemble FCM (EFCM). RPFCM is more suitable than EFCM for big data sets (large number of points, n). We evaluate our method and compare it to EFCM on synthetic and real datasets.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Fuzzy c-Means and Cluster Ensemble with Random Projection for Big Data Clustering
    Ye, Mao
    Liu, Wenfen
    Wei, Jianghong
    Hu, Xuexian
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [2] Hyperplane Division in Fuzzy C-Means: Clustering Big Data
    Shen, Yinghua
    Pedrycz, Witold
    Chen, Yuan
    Wang, Xianmin
    Gacek, Adam
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (11) : 3032 - 3046
  • [3] A fuzzy clustering model of data and fuzzy c-means
    Nascimento, S
    Mirkin, B
    Moura-Pires, F
    NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 302 - 307
  • [4] A Weighted Fuzzy c-Means Clustering Algorithm for Incomplete Big Sensor Data
    Li, Peng
    Chen, Zhikui
    Hu, Yueming
    Leng, Yonglin
    Li, Qiucen
    WIRELESS SENSOR NETWORKS (CWSN 2017), 2018, 812 : 55 - 63
  • [5] Hybrid Fuzzy C-Means Clustering Algorithm Oriented to Big Data Realms
    Perez-Ortega, Joaquin
    Silvia Roblero-Aguilar, Sandra
    Nely Almanza-Ortega, Nelva
    Frausto Solis, Juan
    Zavala-Diaz, Crispin
    Hernandez, Yasmin
    Landero-Najera, Vanesa
    AXIOMS, 2022, 11 (08)
  • [6] Random vector clustering using fuzzy c-means
    Hathaway, RJ
    Rogers, GW
    Bezdek, JC
    1998 CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 1998, : 251 - 255
  • [7] Fuzzy c-means clustering of incomplete data
    Hathaway, RJ
    Bezdek, JC
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2001, 31 (05): : 735 - 744
  • [8] Tailoring fuzzy c-means clustering algorithm for big data using random sampling and particle swarm optimization
    Xianfeng, Yang
    Pengfei, Liu
    International Journal of Database Theory and Application, 2015, 8 (03): : 191 - 202
  • [9] A weighted fuzzy c-means clustering model for fuzzy data
    D'Urso, P
    Giordani, P
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (06) : 1496 - 1523
  • [10] Mapreduce fuzzy c-means ensemble clustering with gentle adaboost for big data analytics
    Padmapriya K.M.
    Anandhi B.
    Vijayakumar M.
    International Journal of Business Intelligence and Data Mining, 2021, 19 (02): : 170 - 188