The Star-Structure Connectivity and Star-Substructure Connectivity of Hypercubes and Folded Hypercubes

被引:6
作者
Ba, Lina [1 ]
Zhang, Heping [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
关键词
structure connectivity; substructure connectivity; star graph; hypercube; folded hypercube; STRUCTURE FAULT-TOLERANCE; EXTRACONNECTIVITY;
D O I
10.1093/comjnl/bxab133
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
As a generalization of vertex connectivity, for connected graphs G and T, the T-structure connectivity kappa (G; T) (resp. T-substructure connectivity kappa(s) (G;T)) of G is the minimum cardinality of a set of subgraphs F of G that each is isomorphic to T (resp. to a connected subgraph of T) so that G - F is disconnected. For n-dimensional hypercube Q(n), Lin et al. showed kappa (Q(n); K-1,K-r) = kappa(s)(Q(n); K-1,K-r) = inverted right perpendicularn/2inverted left perpendicular and kappa (Q(n); Ki,r) = kappa(s)(Qn ; Ki,r) = 51 for 2 <= r <= 3 and n >= 3 (Lin, C.-K., Zhang, L.-L., Fan, J.-X. and Wang, D.-J. (2016) Structure connectivity and substructure connectivity of hypercubes. Theor. Comput. Sci., 634, 97-107). Sabir et al. obtained that kappa(Q(n); K-1,K-4) = kappa(s) (Q(n); K-1,K-4) = inverted right perpendicularn/2inverted left perpendicular for n >= 6 and for n-dimensional folded hypercube FQ(n), kappa(FQ(n); K-1,K-1) = kappa(s) (FQ(n); K-1,K-1) = n, kappa(FQ(n); K-1,K-r) = kappa(s)(FQ(n); K-1,K-r) = inverted right perpendicularn+1/2inverted left perpendicular with 2 <= r <= 3 and n >= 7 (Sabir, E. and Meng, J.(2018) Structure fault tolerance of hypercubes and folded hypercubes. Theor. Comput. Sci., 711, 44-55). They proposed an open problem of determining K-1,K- r-structure connectivity of Q(n) and FQ(n) for general r. In this paper, we obtain that for each integer r >= 2, kappa(Q(n); K-1,K-r) = kappa(s)(Q(n); K-1,K-r) = inverted right perpendicularn/2inverted left perpendicular and kappa(FQ(n); K-1,K-r) = kappa(s)(FQ(n); K-1,K-r) = inverted right perpendicularnn+1/2inverted left perpendicular for all integers n larger than r in quare scale. For 4 <= r <= 6, we separately confirm the above result holds for Q n in the remaining cases.
引用
收藏
页码:3156 / 3166
页数:11
相关论文
共 18 条
[1]   PROPERTIES AND PERFORMANCE OF FOLDED HYPERCUBES [J].
ELAMAWY, A ;
LATIFI, S .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1991, 2 (01) :31-42
[2]  
Esmaeili T., 2012, J COMPUT, V4, P163
[3]   On the extraconnectivity of graphs [J].
Fabrega, J ;
Fiol, MA .
DISCRETE MATHEMATICS, 1996, 155 (1-3) :49-57
[4]   SIMULATION OF PM21 NETWORK BY FOLDED HYPERCUBE [J].
LATIFI, S .
IEE PROCEEDINGS-E COMPUTERS AND DIGITAL TECHNIQUES, 1991, 138 (06) :397-400
[5]   Structure connectivity and substructure connectivity of twisted hypercubes [J].
Li, Dong ;
Hu, Xiaolan ;
Liu, Huiqing .
THEORETICAL COMPUTER SCIENCE, 2019, 796 :169-179
[6]   Structure connectivity and substructure connectivity of hypercubes [J].
Lin, Cheng-Kuan ;
Zhang, Lili ;
Fan, Jianxi ;
Wang, Dajin .
THEORETICAL COMPUTER SCIENCE, 2016, 634 :97-107
[7]   Structure connectivity and substructure connectivity of k-ary n-cube networks [J].
Lv, Yali ;
Fan, Jianxi ;
Hsu, D. Frank ;
Lin, Cheng-Kuan .
INFORMATION SCIENCES, 2018, 433 :115-124
[8]   Structure connectivity of hypercubes [J].
Mane, S. A. .
AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2018, 15 (01) :49-52
[9]   Structure fault tolerance of k-ary n-cube networks [J].
Miao, Lu ;
Zhang, Shurong ;
Li, Rong-hua ;
Yang, Weihua .
THEORETICAL COMPUTER SCIENCE, 2019, 795 :213-218
[10]  
Park JS, 2001, LECT NOTES COMPUT SC, V2094, P370