Relative Gromov-Witten invariants

被引:121
作者
Ionel, EN [1 ]
Parker, TH
机构
[1] Univ Wisconsin, Madison, WI USA
[2] Michigan State Univ, E Lansing, MI 48824 USA
关键词
D O I
10.4007/annals.2003.157.45
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define relative Gromov-Witten invariants of a symplectic manifold relative to a codimension-two symplectic submanifold. These invariants are the key ingredients in the symplectic sum formula of [IP4]. The main step is the construction of a compact space of 'V-stable' maps. Simple special cases include the Hurwitz numbers for algebraic curves and the enumerative invariants of Caporaso and Harris.
引用
收藏
页码:45 / 96
页数:52
相关论文
共 30 条
[1]  
Aronszajn N., 1957, J. Math. Pures Appl, V36, P235
[2]   Counting plane curves of any genus [J].
Caporaso, L ;
Harris, J .
INVENTIONES MATHEMATICAE, 1998, 131 (02) :345-392
[3]  
ELIASHBERG Y, 1998, EXTRA, V2, P327
[4]   Arnold conjecture and Gromov-Witten invariant [J].
Fukaya, K ;
Ono, K .
TOPOLOGY, 1999, 38 (05) :933-1048
[5]  
Griffiths P., 1994, PRINCIPLES ALGEBRAIC
[6]   PSEUDO HOLOMORPHIC-CURVES IN SYMPLECTIC-MANIFOLDS [J].
GROMOV, M .
INVENTIONES MATHEMATICAE, 1985, 82 (02) :307-347
[7]  
Hummel C., 1997, Prog. Math., V151
[8]  
Hurwitz A, 1902, MATH ANN, V55, P53
[9]  
IONEL E, UNPUB VIRTUAL FUNDAM
[10]  
IONEL E, IN PRESS ANN MATH