Structure and mechanical properties of Al-Ca alloys processed by severe plastic deformation

被引:24
作者
Rogachev, S. O. [1 ]
Naumova, E. A. [1 ,2 ]
Vasileva, E. S. [1 ]
Magurina, M. Yu [1 ]
Sundeev, R., V [1 ,3 ]
Veligzhanin, A. A. [4 ]
机构
[1] Natl Univ Sci & Technol MISIS, 4 Leninsky Pr, Moscow 119049, Russia
[2] MSTU STANKIN, 3a Vadkovskiy Pereulok, Moscow 127055, Russia
[3] Moscow Technol Univ MIREA, 78 Vernadskogo Av, Moscow 119454, Russia
[4] Natl Res Ctr, Kurchatov Inst, 1 Akad Kurchatova Pl, Moscow 123182, Russia
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2019年 / 767卷
关键词
Eutectic Al-Ca alloy; High-pressure torsion; Nanocrystalline materials; Microstructure; Hardening; PHASE-COMPOSITION; MICROSTRUCTURAL EVOLUTION; THERMAL-STABILITY; GRAIN-REFINEMENT; ALUMINUM-ALLOYS; MG-SI; PRESSURE; MICROHARDNESS; TRANSITIONS; SCANDIUM;
D O I
10.1016/j.msea.2019.138410
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The study investigated the effect of deformation by high-pressure torsion (HPT) on the hardening, structure transformations, and thermal stability of two eutectic alloys: binary - Al-8.0% Ca and complex-alloyed - Al-3.5% Ca-0.9% Mn-0.5% Fe-0.1% Zr-0.1% Sc. The HPT-deformation of the alloys (5 revolutions) led to the formation of a nanocrystalline structure with a high density of crystal defects. A predominant grain size was 20-40 nm in the binary alloy and 11-34 nm in the complex alloy. HPT resulted in the refinement of the Al4Ca particles for the binary alloy and the transformation of the Al4Ca particles into nanoclusters and segregation for the complex alloy. HPT increased the microhardness of the binary alloy to 1.80-2.05 GPa (similar to 2 times), and of the complex-alloyed alloy to 2.40-2.70 GPa (4.1-4.6 times). The hardening of the complex alloy is retained to higher heating temperatures compared to the binary alloy.
引用
收藏
页数:7
相关论文
共 36 条
[1]  
Altenpohl D., 1998, Aluminum--technology, Applications, and Environment: A Profile of a Modern Metal: Aluminum from Within--the Sixth Edition
[2]   Microstructure evolution and aging kinetics of Al-Mg-Si and Al-Mg-Si-Sc alloys processed by ECAP [J].
Angella, G ;
Bassani, P ;
Tuissi, A ;
Ripamonti, D ;
Vedani, M .
NANOMATERIALS BY SEVERE PLASTIC DEFORMATION, 2006, 503-504 :493-498
[3]  
Belov NA, 2017, NON-FERROUS MET, P49, DOI 10.17580/nfm.2017.02.09
[4]   Effect of scandium on structure and hardening of Al-Ca eutectic alloys [J].
Belov, N. A. ;
Naumova, E. A. ;
Alabin, A. N. ;
Matveeva, I. A. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 646 :741-747
[5]  
Belov N.A., 2017, Tsvetnye Metally, V3, P69, DOI 10.17580/tsm.2017.03.11
[6]   Effect of Calcium on Structure, Phase Composition and Hardening of Al-Zn-Mg Alloys Containing up to 12wt.%Zn [J].
Belov, Nikolay Aleksandrovich ;
Naumova, Evgenia Alexandrovna ;
Akopyan, Torgom Karoevich .
MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2015, 18 (06) :1384-1391
[7]   Influence of the thermal treatment on the deformation-induced precipitation of a hypoeutectic Al-7 wt% Si casting alloy deformed by high-pressure torsion [J].
Cepeda-Jimenez, C. M. ;
Garcia-Infanta, J. M. ;
Zhilyaev, A. P. ;
Ruano, O. A. ;
Carreno, F. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (03) :636-643
[8]   Influence of severe plastic deformation on aging of Al-Mg-Si alloys [J].
Cerri, E ;
Leo, P .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 410 :226-229
[9]   LIGHTWEIGHT MATERIALS FOR AUTOMOTIVE APPLICATIONS [J].
COLE, GS ;
SHERMAN, AM .
MATERIALS CHARACTERIZATION, 1995, 35 (01) :3-9
[10]   Strength, damage and fracture behaviors of high-nitrogen austenitic stainless steel processed by high-pressure torsion [J].
Dong, F. Y. ;
Zhang, P. ;
Pang, J. C. ;
Ren, Y. B. ;
Yang, K. ;
Zhang, Z. F. .
SCRIPTA MATERIALIA, 2015, 96 :5-8