Cavity Photons as a Probe for Charge Relaxation Resistance and Photon Emission in a Quantum Dot Coupled to Normal and Superconducting Continua

被引:60
作者
Bruhat, L. E. [1 ]
Viennot, J. J. [1 ,2 ,3 ]
Dartiailh, M. C. [1 ]
Desjardins, M. M. [1 ]
Kontos, T. [1 ]
Cottet, A. [1 ]
机构
[1] Univ Paris 06, Sorbonne Univ, Lab Pierre Aigrain,Ecole Normale Super,CNRS, PSL Res Univ,Univ Paris Diderot,Sorbonne Paris Ci, 24 Rue Lhomond, F-75231 Paris 05, France
[2] Univ Colorado, JILA, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
关键词
ANDREEV BOUND-STATES; CARBON NANOTUBES; TRANSPORT; CIRCUIT; SYSTEM; SPIN; ELECTRODYNAMICS; JUNCTION; DEVICES; QUBIT;
D O I
10.1103/PhysRevX.6.021014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Microwave cavities have been widely used to investigate the behavior of closed few-level systems. Here, we show that they also represent a powerful probe for the dynamics of charge transfer between a discrete electronic level and fermionic continua. We have combined experiment and theory for a carbon nanotube quantum dot coupled to normal metal and superconducting contacts. In equilibrium conditions, where our device behaves as an effective quantum dot-normal metal junction, we approach a universal photon dissipation regime governed by a quantum charge relaxation effect. We observe how photon dissipation is modified when the dot admittance turns from capacitive to inductive. When the fermionic reservoirs are voltage biased, the dot can even cause photon emission due to inelastic tunneling to/from a Bardeen-Cooper-Schrieffer peak in the density of states of the superconducting contact. We can model these numerous effects quantitatively in terms of the charge susceptibility of the quantum dot circuit. This validates an approach that could be used to study a wide class of mesoscopic QED devices.
引用
收藏
页数:16
相关论文
共 86 条
[1]   Sensitive Radio-Frequency Measurements of a Quantum Dot by Tuning to Perfect Impedance Matching [J].
Ares, N. ;
Schupp, F. J. ;
Mavalankar, A. ;
Rogers, G. ;
Griffiths, J. ;
Jones, G. A. C. ;
Farrer, I. ;
Ritchie, D. A. ;
Smith, C. G. ;
Cottet, A. ;
Briggs, G. A. D. ;
Laird, E. A. .
PHYSICAL REVIEW APPLIED, 2016, 5 (03)
[2]   Andreev Bound-State Dynamics in Quantum-Dot Josephson Junctions: A Washing Out of the 0-π Transition [J].
Avriller, R. ;
Pistolesi, F. .
PHYSICAL REVIEW LETTERS, 2015, 114 (03)
[3]   Enhancements of the Andreev conductance due to emission/absorption of bosonic quanta [J].
Baranski, J. ;
Domanski, T. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (30)
[4]   Single-electron double quantum dot dipole-coupled to a single photonic mode [J].
Basset, J. ;
Jarausch, D-D. ;
Stockklauser, A. ;
Frey, T. ;
Reichl, C. ;
Wegscheider, W. ;
Ihn, T. M. ;
Ensslin, K. ;
Wallraff, A. .
PHYSICAL REVIEW B, 2013, 88 (12)
[5]   Photon-assisted tunneling through a quantum dot at high microwave frequencies [J].
Blick, RH ;
Haug, RJ ;
vanderWeide, DW ;
vonKlitzing, K ;
Eberl, K .
APPLIED PHYSICS LETTERS, 1995, 67 (26) :3924-3926
[6]  
Bruhat L. E., UNPUB
[7]   Charge relaxation resistance in the cotunneling regime of multichannel Coulomb blockade: Violation of Korringa-Shiba relation [J].
Burmistrov, I. S. ;
Rodionov, Ya. I. .
PHYSICAL REVIEW B, 2015, 92 (19)
[8]   MESOSCOPIC CAPACITORS [J].
BUTTIKER, M ;
THOMAS, H ;
PRETRE, A .
PHYSICS LETTERS A, 1993, 180 (4-5) :364-369
[9]   Mesoscopic cavity quantum electrodynamics with quantum dots [J].
Childress, L ;
Sorensen, AS ;
Lukin, MD .
PHYSICAL REVIEW A, 2004, 69 (04) :042302-1
[10]   Transmission of a microwave cavity coupled to localized Shiba states [J].
Chirla, Razvan ;
Manolescu, Andrei ;
Moca, Catalin Pascu .
PHYSICAL REVIEW B, 2016, 93 (15)