Cavity Photons as a Probe for Charge Relaxation Resistance and Photon Emission in a Quantum Dot Coupled to Normal and Superconducting Continua

被引:59
作者
Bruhat, L. E. [1 ]
Viennot, J. J. [1 ,2 ,3 ]
Dartiailh, M. C. [1 ]
Desjardins, M. M. [1 ]
Kontos, T. [1 ]
Cottet, A. [1 ]
机构
[1] Univ Paris 06, Sorbonne Univ, Lab Pierre Aigrain,Ecole Normale Super,CNRS, PSL Res Univ,Univ Paris Diderot,Sorbonne Paris Ci, 24 Rue Lhomond, F-75231 Paris 05, France
[2] Univ Colorado, JILA, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
来源
PHYSICAL REVIEW X | 2016年 / 6卷 / 02期
关键词
ANDREEV BOUND-STATES; CARBON NANOTUBES; TRANSPORT; CIRCUIT; SYSTEM; SPIN; ELECTRODYNAMICS; JUNCTION; DEVICES; QUBIT;
D O I
10.1103/PhysRevX.6.021014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Microwave cavities have been widely used to investigate the behavior of closed few-level systems. Here, we show that they also represent a powerful probe for the dynamics of charge transfer between a discrete electronic level and fermionic continua. We have combined experiment and theory for a carbon nanotube quantum dot coupled to normal metal and superconducting contacts. In equilibrium conditions, where our device behaves as an effective quantum dot-normal metal junction, we approach a universal photon dissipation regime governed by a quantum charge relaxation effect. We observe how photon dissipation is modified when the dot admittance turns from capacitive to inductive. When the fermionic reservoirs are voltage biased, the dot can even cause photon emission due to inelastic tunneling to/from a Bardeen-Cooper-Schrieffer peak in the density of states of the superconducting contact. We can model these numerous effects quantitatively in terms of the charge susceptibility of the quantum dot circuit. This validates an approach that could be used to study a wide class of mesoscopic QED devices.
引用
收藏
页数:16
相关论文
共 86 条
  • [1] Sensitive Radio-Frequency Measurements of a Quantum Dot by Tuning to Perfect Impedance Matching
    Ares, N.
    Schupp, F. J.
    Mavalankar, A.
    Rogers, G.
    Griffiths, J.
    Jones, G. A. C.
    Farrer, I.
    Ritchie, D. A.
    Smith, C. G.
    Cottet, A.
    Briggs, G. A. D.
    Laird, E. A.
    [J]. PHYSICAL REVIEW APPLIED, 2016, 5 (03):
  • [2] Andreev Bound-State Dynamics in Quantum-Dot Josephson Junctions: A Washing Out of the 0-π Transition
    Avriller, R.
    Pistolesi, F.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (03)
  • [3] Enhancements of the Andreev conductance due to emission/absorption of bosonic quanta
    Baranski, J.
    Domanski, T.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (30)
  • [4] Single-electron double quantum dot dipole-coupled to a single photonic mode
    Basset, J.
    Jarausch, D-D.
    Stockklauser, A.
    Frey, T.
    Reichl, C.
    Wegscheider, W.
    Ihn, T. M.
    Ensslin, K.
    Wallraff, A.
    [J]. PHYSICAL REVIEW B, 2013, 88 (12)
  • [5] Photon-assisted tunneling through a quantum dot at high microwave frequencies
    Blick, RH
    Haug, RJ
    vanderWeide, DW
    vonKlitzing, K
    Eberl, K
    [J]. APPLIED PHYSICS LETTERS, 1995, 67 (26) : 3924 - 3926
  • [6] Bruhat L. E., UNPUB
  • [7] Charge relaxation resistance in the cotunneling regime of multichannel Coulomb blockade: Violation of Korringa-Shiba relation
    Burmistrov, I. S.
    Rodionov, Ya. I.
    [J]. PHYSICAL REVIEW B, 2015, 92 (19)
  • [8] MESOSCOPIC CAPACITORS
    BUTTIKER, M
    THOMAS, H
    PRETRE, A
    [J]. PHYSICS LETTERS A, 1993, 180 (4-5) : 364 - 369
  • [9] Mesoscopic cavity quantum electrodynamics with quantum dots
    Childress, L
    Sorensen, AS
    Lukin, MD
    [J]. PHYSICAL REVIEW A, 2004, 69 (04): : 042302 - 1
  • [10] Transmission of a microwave cavity coupled to localized Shiba states
    Chirla, Razvan
    Manolescu, Andrei
    Moca, Catalin Pascu
    [J]. PHYSICAL REVIEW B, 2016, 93 (15)