Large time behavior for the fast diffusion equation with critical absorption

被引:5
作者
Benachour, Said [1 ]
Gabriel Iagar, Razvan [2 ,3 ]
Laurencot, Philippe [4 ]
机构
[1] Univ Lorraine, Inst Elie Cartan, UMR 7502, F-54506 Vandoeuvre Les Nancy, France
[2] Inst Ciencias Matemat ICMAT, Campus Cantoblanco,Nicolas Cabrera 13-15, E-28049 Madrid, Spain
[3] Romanian Acad, Inst Math, POB 1-764, RO-014700 Bucharest, Romania
[4] Univ Toulouse, CNRS, Inst Math Toulouse, UMR 5219, F-31062 Toulouse 9, France
关键词
Large time behavior; Fast diffusion; Critical absorption; Gradient estimates; Lower bound; POROUS-MEDIA EQUATION; NONLINEAR PARABOLIC EQUATIONS; ASYMPTOTIC-BEHAVIOR; SINGULAR SOLUTION; CAUCHY-PROBLEM; HEAT-EQUATION; CLASSIFICATION; UNIQUENESS; RN;
D O I
10.1016/j.jde.2016.02.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the large time behavior of nonnegative solutions to the Cauchy problem for a fast diffusion equation with critical zero order absorption partial derivative(t)u - Delta u(m) + u(q) = 0 in (0, infinity) x R-N, with m(c) := (N - 2) + / N < m < 1 and q = m + 2/N. Given an initial condition u(0) decaying arbitrarily fast at infinity, we show that the asymptotic behavior of the corresponding solution u is given by a Barenblatt profile with a logarithmic scaling, thereby extending a previous result requiring a specific algebraic lower bound on u(0). A by-product of our analysis is the derivation of sharp gradient estimates and a universal lower bound, which have their own interest and hold true for general exponents q > 1. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:8000 / 8024
页数:25
相关论文
共 34 条
[1]  
ARONSON DG, 1979, CR ACAD SCI A MATH, V288, P103
[2]  
Benilan Ph., 1981, EVOLUTION EQUATIONS
[3]  
BREZIS H, 1986, ARCH RATION MECH AN, V95, P185, DOI 10.1007/BF00251357
[4]   RENORMALIZATION-GROUP AND ASYMPTOTICS OF SOLUTIONS OF NONLINEAR PARABOLIC EQUATIONS [J].
BRICMONT, J ;
KUPIAINEN, A ;
LIN, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (06) :893-922
[5]   Long time behavior of solutions to P-Laplacian equation with absorption [J].
Chen, XF ;
Qi, YW ;
Wang, MX .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (01) :123-134
[6]   Classification of singular solutions of porous media equations with absorption [J].
Chen, XF ;
Qi, YW ;
Wang, MX .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2005, 135 :563-584
[7]   Uniqueness of asymptotic profiles for an extinction problem [J].
Ferreira, R ;
Galaktionov, VA ;
Vazquez, JL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 50 (04) :495-507
[8]   Extinction behaviour for fast diffusion equations with absorption [J].
Ferreira, R ;
Vazquez, JL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 43 (08) :943-985
[9]  
Galaktionov V.A., 1986, 71 KELD I APPL MATH
[10]  
Galaktionov V.A., 1985, Mat. Sb., V126, P435