THE METHOD OF UPPER AND LOWER SOLUTIONS FOR SECOND ORDER DIFFERENTIAL INCLUSIONS WITH INTEGRAL BOUNDARY CONDITIONS

被引:25
作者
Benchohra, Mouffak [1 ]
Hamani, Samira [1 ]
Nieto, Juan J. [2 ]
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Lab Math, Sidi Bel Abbes 22000, Algeria
[2] Univ Santiago de Compostela, Dept Anal Matemat, Fac Matemat, Santiago De Compostela 15782, Spain
关键词
Differential inclusion; boundary value problem; integral boundary conditions; lower and upper solution; truncation map; fixed point; MONOTONE METHOD; EQUATIONS; 1ST-ORDER; OPERATORS; EXISTENCE; SYSTEMS;
D O I
10.1216/RMJ-2010-40-1-13
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the existence of solutions of second order differential inclusion with integral boundary conditions. We rely on the nonlinear alternative of Leray-Schauder combined with the lower and upper solutions method.
引用
收藏
页码:13 / 26
页数:14
相关论文
共 36 条
[1]   CELLULAR-SYSTEMS AND AGING MODELS [J].
ADOMIAN, G ;
ADOMIAN, GE .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1985, 11 (1-3) :283-291
[2]   Differential inclusions on proximate retracts of separable Hilbert spaces [J].
Agarwal, Ravi P. ;
O'Regan, Donal .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2006, 36 (03) :765-781
[3]  
[Anonymous], FAR E J MATH SCI
[4]  
Aubin J.P., 1990, SET VALUED ANAL, DOI 10.1007/978-0-8176-4848-0
[5]  
Aubin J.P., 1984, DIFFERENTIAL INCLUSI
[6]   Spectral singularities of Klein-Gordon s-wave equations with an integral boundary condition [J].
Bairamov, E ;
Karaman, Ö .
ACTA MATHEMATICA HUNGARICA, 2002, 97 (1-2) :121-131
[7]  
Benchohra M, 2005, MATH INEQUAL APPL, V8, P71
[8]  
Benchohra M, 2005, DYNAM SYST APPL, V14, P57
[9]  
Benchohra M, 2002, DYN SYST APPL, V11, P13
[10]  
Benchohra M, 2006, J APPL MATH STOCH AN, V2006, P1