A 0.65-mW-to-1-W Photovoltaic Energy Harvester With Irradiance-Aware Auto-Configurable Hybrid MPPT Achieving >95% MPPT Efficiency and 2.9-ms FOCV Transient Time

被引:21
作者
Uprety, Sandip [1 ,2 ]
Lee, Hoi [1 ]
机构
[1] Univ Texas Dallas, Dept Elect & Comp Engn, Richardson, TX 75080 USA
[2] Texas Instruments Inc, Dallas, TX 75266 USA
关键词
Irradiance-aware auto-reconfigurable maximum power point tracking (MPPT) scheme; MPPT; photovoltaic (PV) energy harvester; PV systems; slew-rate-enhanced (SRE) fractional open-cell voltage (FOCV) scheme; solar energy; BOOST CONVERTER; POWER; SYSTEM;
D O I
10.1109/JSSC.2020.3042753
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents an integrated photovoltaic (PV) energy harvester for mobile applications. In the energy harvester, an irradiance-aware hybrid algorithm (IAHA) is developed to automatically select appropriate maximum power point tracking (MPPT) scheme and control methodology under different irradiance levels in order to provide high tracking efficiency and power efficiency across wide power ranges. A slew-rate-enhanced (SRE) fractional open-cell voltage (FOCV) method is also proposed to shorten the transient time for MPPT in light loads, thereby increasing energy capture from the solar panel. The proposed input-regulated boost energy harvester was developed in a 0.35-mu m CMOS process. With IAHA, the harvester achieves the MPPT efficiency >95% over an output power range from 0.65 mW to 1 W that is significantly wider than other previous state-of-the-art designs. This harvester also provides at least five times improvement in the output power range for achieving >85% power efficiency. The SRE FOCV MPPT scheme achieves a 2.9-ms MPPT transient time that reduces the prior FOCV transient time by 86 times.
引用
收藏
页码:1827 / 1836
页数:10
相关论文
共 21 条
[1]   High-Performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic-Based Microgrids [J].
Abdelsalam, Ahmed K. ;
Massoud, Ahmed M. ;
Ahmed, Shehab ;
Enjeti, Prasad N. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2011, 26 (04) :1010-1021
[2]  
Analog Devices, LT3652 POW TRACK 2A
[3]   A 1.1 nW Energy-Harvesting System with 544 pW Quiescent Power for Next-Generation Implants [J].
Bandyopadhyay, Saurav ;
Mercier, Patrick P. ;
Lysaght, Andrew C. ;
Stankovic, Konstantina M. ;
Chandrakasan, Anantha P. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2014, 49 (12) :2812-2824
[4]   Platform Architecture for Solar, Thermal, and Vibration Energy Combining With MPPT and Single Inductor [J].
Bandyopadhyay, Saurav ;
Chandrakasan, Anantha P. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2012, 47 (09) :2199-2215
[5]   Design of a Solar-Harvesting Circuit for Batteryless Embedded Systems [J].
Brunelli, Davide ;
Moser, Clemens ;
Thiele, Lothar ;
Benini, Luca .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2009, 56 (11) :2519-2528
[6]  
Enne R., 2012, 2012 IEEE International Solid-State Circuits Conference (ISSCC), P102, DOI 10.1109/ISSCC.2012.6176894
[7]   A 40 mV Transformer-Reuse Self-Startup Boost Converter With MPPT Control for Thermoelectric Energy Harvesting [J].
Im, Jong-Pil ;
Wang, Se-Won ;
Ryu, Seung-Tak ;
Cho, Gyu-Hyeong .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2012, 47 (12) :3055-3067
[8]   An Efficiency-Aware Cooperative Multicharger System for Photovoltaic Energy Harvesting Achieving 14 Efficiency Improvement [J].
Jeong, Junwon ;
Shim, Minseob ;
Maeng, Junyoung ;
Park, Inho ;
Kim, Chulwoo .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2020, 35 (03) :2253-2256
[9]  
Kadirvel K., 2012, 2012 IEEE International Solid-State Circuits Conference (ISSCC), P106, DOI 10.1109/ISSCC.2012.6176896
[10]   Fast Photovoltaic-System Voltage- or Current-Oriented MPPT Employing a Predictive Digital Current-Controlled Converter [J].
Kakosimos, Panagiotis E. ;
Kladas, Antonios G. ;
Manias, Stefanos N. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (12) :5673-5685