Numerical investigation of effectivity indices of space-time error indicators for Navier-Stokes equations

被引:7
作者
Berrone, S. [1 ]
Marro, M. [2 ,3 ]
机构
[1] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
[2] Politecn Torino, Dipartimento Ingn Aeronaut & Spaziale, I-10129 Turin, Italy
[3] Golder Associates Srl, I-10155 Turin, Italy
关键词
Navier-Stokes equations; Space-time adaptivity; Effectivity indices; A posteriori error indicators; BACKWARD-FACING STEP; FINITE-ELEMENT METHODS; CONVECTION-DIFFUSION EQUATIONS; INCOMPRESSIBLE-FLOW; HEAT-EQUATION; DISCRETIZATION; FORMULATIONS; SIMULATIONS; STATIONARY;
D O I
10.1016/j.cma.2010.02.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we propose two error indicators aimed at estimating the space discretization error and the time discretization error for the unsteady Navier-Stokes equations. We define a space error indicator for evaluating the quality of the mesh and a time error indicator for evaluating the time discretization error. Moreover, we verify the reliability of the estimations through numerical experiments and we propose an effective space-time adaptive strategy for the unsteady Navier-Stokes equations. Such technique is based on two residual-based error indicators that suitably drive the mesh and the timestep-length modifications. Adaptive simulations show that the presented strategy allows to obtain accurate solutions in efficient way. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1764 / 1782
页数:19
相关论文
共 32 条
[1]   Reliable and robust a posteriori error estimation for singularly perturbed reaction-diffusion problems [J].
Ainsworth, M ;
Babuska, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (02) :331-353
[2]   A posteriori error estimators for the Stokes and Oseen equations [J].
Ainsworth, M ;
Oden, JT .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (01) :228-245
[3]  
Bergam A, 2005, MATH COMPUT, V74, P1117, DOI 10.1090/S0025-5718-04-01697-7
[4]  
BERNARDI C, 2004, M2AN, V38, P437
[5]   Space-time adaptive simulations for unsteady Navier-Stokes problems [J].
Berrone, S. ;
Marro, M. .
COMPUTERS & FLUIDS, 2009, 38 (06) :1132-1144
[6]   Adaptive discretization of stationary and incompressible Navier-Stokes equations by stabilized finite element methods [J].
Berrone, S .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (34) :4435-4455
[7]  
BERRONE S, SKIPPING TR IN PRESS, DOI DOI 10.1051/M2AN/2010009
[8]  
BERRONE S, 2006, M2MAN, V6, P991
[9]   A LOCAL-IN-SPACE-TIMESTEP APPROACH TO A FINITE ELEMENT DISCRETIZATION OF THE HEAT EQUATION WITH A POSTERIORI ESTIMATES [J].
Berrone, Stefano .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) :3109-3138
[10]  
Cao J, 2005, COMPUT FLUIDS, V34, P972, DOI 10.1016/j.compfluid.2004.09.001