Leakage of photospheric acoustic waves into non-magnetic solar atmosphere

被引:41
作者
Erdelyi, R.
Malins, C.
Toth, G.
De Pontieu, B.
机构
[1] Univ Sheffield, Solar Phys & Space Plasma Res Ctr SP2RC, Dept Appl Math, Sheffield S3 7RH, S Yorkshire, England
[2] Eotvos Lorand Univ, Dept Atom Phys, H-1117 Budapest, Hungary
[3] Lockheed Martin Solar & Astrophys Lab, Org ADBS, Palo Alto, CA 94304 USA
关键词
hydrodynamics; methods : numerical; Sun : chromosphere; Sun : oscillations; Sun : atmosphere; Sun : transition region;
D O I
10.1051/0004-6361:20066857
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Aims. This paper aims to look at the propagation of synthetic photospheric oscillations from a point source into a two-dimensional non-magnetic solar atmosphere. It takes a particular interest in the leakage of 5-min global oscillations into the atmosphere, and aims to complement efforts on the driving of chromospheric dynamics ( e. g. spicules and waves) by 5-min oscillations. Methods. A model solar atmosphere is constructed based on realistic temperature and gravitational stratification. The response of this atmosphere to a wide range of adiabatic periodic velocity drivers is numerically investigated in the hydrodynamic approximation. Results. The findings of this modelling are threefold. Firstly, high-frequency waves are shown to propagate from the lower atmosphere across the transition region experiencing relatively low reflection and transmitting energy into the corona. Secondly, it is demonstrated that driving the upper solar photosphere with a harmonic piston driver at around the 5 min period may generate three separate standing modes with similar periods in the chromosphere and transition region. In the cavity formed by the chromosphere and bounded by regions of low cut-off period at the photospheric temperature minimum and the transition region this is caused by reflection, while at either end of this region in the lower chromosphere and transition region the standing modes are caused by resonant excitation. Finally, the transition region becomes a guide for horizontally propagating surface waves for a wide range of driver periods, and in particular at those periods which support chromospheric standing waves. Crucially, these findings are the results of a combination of a chromospheric cavity and resonant excitation in the lower atmosphere and transition region.
引用
收藏
页码:1299 / 1311
页数:13
相关论文
共 42 条
[1]  
AVRETT EH, 1996, IAU S, V176, P503
[2]   Does the sun have a full-time COmosphere? [J].
Ayres, TR .
ASTROPHYSICAL JOURNAL, 2002, 575 (02) :1104-1115
[3]  
Ayres TR, 1998, IAU SYMP, P403
[4]   Sunspot oscillations: A review - (Invited review) [J].
Bogdan, TJ .
SOLAR PHYSICS, 2000, 192 (1-2) :373-394
[5]   Waves in the magnetized solar atmosphere.: II.: Waves from localized sources in magnetic flux concentrations [J].
Bogdan, TJ ;
Hansteen, MCV ;
McMurry, A ;
Rosenthal, CS ;
Johnson, M ;
Petty-Powell, S ;
Zita, EJ ;
Stein, RF ;
McIntosh, SW ;
Nordlund, Å .
ASTROPHYSICAL JOURNAL, 2003, 599 (01) :626-660
[6]   Oscillations above sunspots [J].
Brynildsen, N ;
Maltby, P ;
Fredvik, T ;
Kjeldseth-Moe, O .
SOLAR PHYSICS, 2002, 207 (02) :259-290
[7]  
Carlsson M, 2002, ESA SP PUBL, V505, P293
[8]   DOES A NONMAGNETIC SOLAR CHROMOSPHERE EXIST [J].
CARLSSON, M ;
STEIN, RF .
ASTROPHYSICAL JOURNAL, 1995, 440 (01) :L29-L32
[9]  
Carlsson M, 1992, APJ, V397, P59
[10]   MAG waves in sunspots umbrae: Slow waves leaking to the corona [J].
Chaouche, LY ;
Abdelatif, TE .
SOLAR PHYSICS, 2005, 229 (02) :255-271