msBP: An R Package to Perform Bayesian Nonparametric Inference Using Multiscale Bernstein Polynomials Mixtures

被引:2
|
作者
Canale, Antonio [1 ,2 ]
机构
[1] Univ Padua, Dept Stat Sci, Padua, Italy
[2] Coll Carlo Alberto, Moncalieri, TO, Italy
来源
JOURNAL OF STATISTICAL SOFTWARE | 2017年 / 78卷 / 06期
关键词
binary trees; density estimation; multiscale stick-breaking; multiscale testing; DENSITY-ESTIMATION; DIRICHLET PROCESS; SAMPLING METHODS; POLYA TREES; MODEL; PRIORS;
D O I
10.18637/jss.v078.i06
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
msBP is an R package that implements a new method to perform Bayesian multiscale nonparametric inference introduced by Canale and Dunson (2016). The method, based on mixtures of multiscale beta dictionary densities, overcomes the drawbacks of Polya trees and inherits many of the advantages of Dirichlet process mixture models. The key idea is that an infinitely-deep binary tree is introduced, with a beta dictionary density assigned to each node of the tree. Using a multiscale stick-breaking characterization, stochastically decreasing weights are assigned to each node. The result is an infinite mixture model. The package msBP implements a series of basic functions to deal with this family of priors such as random densities and numbers generation, creation and manipulation of binary tree objects, and generic functions to plot and print the results. In addition, it implements the Gibbs samplers for posterior computation to perform multiscale density estimation and multiscale testing of group differences described in Canale and Dunson (2016).
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [1] Bayesian nonparametric inference of stochastically ordered distributions, with Polya trees and Bernstein polynomials
    Karabatsos, George
    Walker, Stephen G.
    STATISTICS & PROBABILITY LETTERS, 2007, 77 (09) : 907 - 913
  • [2] Inference in hybrid Bayesian networks using mixtures of polynomials
    Shenoy, Prakash P.
    West, James C.
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2011, 52 (05) : 641 - 657
  • [3] Dependent Bayesian nonparametric modeling of compositional data using random Bernstein polynomials
    Wehrhahn, Claudia
    Barrientos, Andres F.
    Jara, Alejandro
    ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (01): : 2346 - 2405
  • [4] BNPmix: An R Package for Bayesian Nonparametric Modeling via Pitman-Yor Mixtures
    Corradin, Riccardo
    Canale, Antonio
    Nipoti, Bernardo
    JOURNAL OF STATISTICAL SOFTWARE, 2021, 100 (15): : 1 - 33
  • [5] Two issues in using mixtures of polynomials for inference in hybrid Bayesian networks
    Shenoy, Prakash P.
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2012, 53 (05) : 847 - 866
  • [6] Nonparametric Inference for Multivariate Data: The R Package npmv
    Ellis, Amanda R.
    Burchett, Woodrow W.
    Harrar, Solomon W.
    Bathke, Arne C.
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (04): : 1 - 18
  • [7] BLNN: An R package for training neural networks using Bayesian inference
    Sharaf, Taysseer
    Williams, Theren
    Chehade, Abdallah
    Pokhrel, Keshav
    SOFTWAREX, 2020, 11 (11)
  • [8] Bayesian density estimation using Bernstein polynomials
    Petrone, S
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1999, 27 (01): : 105 - 126
  • [9] Bayesian survival analysis using Bernstein polynomials
    Chang, IS
    Hsiung, CA
    Wu, YJ
    Yang, CC
    SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (03) : 447 - 466
  • [10] Using Bayesian networks to perform reject inference
    Anderson, Billie
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 137 : 349 - 356