An inverse coefficient problem for a parabolic hemivariational inequality

被引:16
作者
Migorski, Stanislaw [1 ]
Ochal, Anna [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Inst Comp Sci, PL-30348 Krakow, Poland
关键词
parabolic; inverse; identification; non-convex; hemivariational inequality; coefficient; Clarke subdifferential; weak solution;
D O I
10.1080/00036810902889559
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of identification problems for a non-linear parabolic boundary hemivariational inequality. Using the least square cost functionals, the problem is to identify an unknown coefficient which depends on the gradient of the solution. It is shown that the hemivariational inequality admits a unique weak solution, which depends continuously on the coefficient. The boundary condition is of a subdifferential type with non-convex and non-smooth potential. Existence of solutions to the inverse problems is established by using the direct method.
引用
收藏
页码:243 / 256
页数:14
相关论文
共 19 条
[1]  
[Anonymous], 2003, INTRO NONLINEAR ANAL, DOI DOI 10.1007/978-1-4419-9158-4
[2]  
Clarke F.H, 1983, OPTIMIZATION NONSMOO
[3]  
Duvaut G., 1976, INEQUALITIES MECH PH, Vfirst, DOI [10.1007/978-3-642-66165-5, DOI 10.1007/978-3-642-66165-5]
[4]  
Gossez J.-P., 1993, Differ.Integral Equ., V6, P37
[5]   Inverse coefficient problems for monotone potential operators [J].
Hasanov, A .
INVERSE PROBLEMS, 1997, 13 (05) :1265-1278
[6]   AN INVERSE PROBLEM FOR AN ELASTOPLASTIC MEDIUM [J].
HASANOV, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (06) :1736-1752
[7]   An inverse coefficient problem for a nonlinear parabolic variational inequality [J].
Hasanov, Alemdar ;
Liu, Zhenhai .
APPLIED MATHEMATICS LETTERS, 2008, 21 (06) :563-570
[8]   Monotonicity of nonlinear boundary value problems related to deformation theory of plasticity [J].
Hasanov, Alemdar .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2006, 2006 :1-18
[9]   Boundary hemivariational inequality of parabolic type [J].
Migórski, S ;
Ochal, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 57 (04) :579-596
[10]  
Migórski S, 2001, NONCON OPTIM ITS APP, V50, P247