On singular Sturm-Liouville boundary-value problems

被引:22
作者
Hai, D. D. [1 ]
机构
[1] Mississippi State Univ, Dept Math, Mississippi State, MS 39762 USA
关键词
ORDINARY DIFFERENTIAL-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.1017/S0308210508000358
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the existence of positive solutions for the boundary-value problem (q(t)phi(u'))' + lambda f (t, u) - 0, r < t < R, au(r) - b phi(-1)(q(r))u'(r) = 0, cu(R) + d phi(-1) (q(R))u'(R) = 0, where phi(u') = vertical bar u'vertical bar(p-2)u', p > 1, lambda > 0, f is p-superlinear or p-sublinear at infinity and is allowed to become -infinity at u = 0. Our results unify and extend many known results in the literature.
引用
收藏
页码:49 / 63
页数:15
相关论文
共 50 条
  • [41] MULTIPLE POSITIVE SOLUTIONS OF A STURM-LIOUVILLE BOUNDARY VALUE PROBLEM WITH CONFLICTING NONLINEARITIES
    Feltrin, Guglielmo
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (03) : 1083 - 1102
  • [42] The Iterative Solution of Generalized Sturm-Liouville Boundary Value Problem in Banach Spaces
    Cao, Jianxin
    Chen, Haibo
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2012, 55 (03): : 429 - 446
  • [43] Positive solutions for Sturm-Liouville eigenvalue problems
    Su, Hua
    Tuo, Qiuju
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (01): : 219 - 230
  • [44] A fourth-order boundary value problem for a Sturm-Liouville type equation
    Bonanno, Gabriele
    Di Bella, Beatrice
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (08) : 3635 - 3640
  • [45] ON POSITIVE SOLUTIONS FOR STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS OF THE FRACTIONAL DIFFERENTIAL EQUATIONS ON THE INFINITE INTERVAL
    Liu, Yuji
    DYNAMIC SYSTEMS AND APPLICATIONS, 2012, 21 (01): : 147 - 160
  • [46] Mixed boundary value problems involving Sturm-Liouville differential equations with possibly negative coefficients
    Bonanno, Gabriele
    DAgui, Giuseppina
    Morabito, Valeria
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01)
  • [47] Two positive solutions for boundary value problems of a kind of Sturm-Liouville functional differential equations
    Gai, MJ
    Shi, B
    Zhang, DC
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2003, 34 (01) : 49 - 57
  • [48] Constant-sign and sign-changing solutions for the Sturm-Liouville boundary value problems
    He, Tieshan
    Sun, Zhaohong
    Yan, Hongming
    Lu, Yimin
    MONATSHEFTE FUR MATHEMATIK, 2016, 179 (01): : 41 - 55
  • [49] Existence results of a kind of Sturm-Liouville type singular boundary value problem with non-linear boundary conditions
    Junfang Zhao
    Weigao Ge
    Journal of Inequalities and Applications, 2012
  • [50] Existence results of a kind of Sturm-Liouville type singular boundary value problem with non-linear boundary conditions
    Zhao, Junfang
    Ge, Weigao
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,