Deformation of Red Blood Cells, Air Bubbles, and Droplets in Microfluidic Devices: Flow Visualizations and Measurements

被引:82
作者
Bento, David [1 ,2 ]
Rodrigues, Raquel O. [1 ,3 ]
Faustino, Vera [4 ]
Pinho, Diana [1 ,2 ,5 ]
Fernandes, Carla S. [1 ]
Pereira, Ana I. [1 ,5 ,6 ]
Garcia, Valdemar [1 ]
Miranda, Joao M. [2 ]
Lima, Rui [2 ,7 ]
机构
[1] Inst Politecn Braganca, ESTiG IPB, P-5301857 Braganca, Portugal
[2] Univ Porto FEUP, Fac Engn, CEFT, Rua Roberto Frias, P-4800058 Porto, Portugal
[3] Univ Porto FEUP, Fac Engn, Associate Lab LSRE LCM, LCM, Rua Roberto Frias, P-4800058 Porto, Portugal
[4] Univ Minho, DEI, MEMS UMinho Res Unit, Campus Azurem, P-4800058 Guimaraes, Portugal
[5] Inst Politecn Braganca, Ctr Invest Digitalizacao & Robot Inteligente CeDR, Campus Santa Apolonia, P-5300253 Braganca, Portugal
[6] Univ Minho, Algoritmi R&D Ctr, Campus Gualtar, P-4710057 Braga, Portugal
[7] Univ Minho, Mech Engn Dept, MEtRiCS, Campus Azurem, P-4800058 Guimaraes, Portugal
关键词
red blood cells; deformation index; microfluidic devices; air bubbles; droplets; blood flow; FALCIPARUM-INFECTED ERYTHROCYTES; TYPE-2; DIABETES-MELLITUS; PLASMODIUM-FALCIPARUM; EXTENSIONAL FLOW; DEFORMABILITY ASSESSMENT; MECHANICAL-PROPERTIES; AUTOMATIC TRACKING; PIV MEASUREMENTS; SHEAR-FLOW; FREE LAYER;
D O I
10.3390/mi9040151
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Techniques, such as micropipette aspiration and optical tweezers, are widely used to measure cell mechanical properties, but are generally labor-intensive and time-consuming, typically involving a difficult process of manipulation. In the past two decades, a large number of microfluidic devices have been developed due to the advantages they offer over other techniques, including transparency for direct optical access, lower cost, reduced space and labor, precise control, and easy manipulation of a small volume of blood samples. This reviewpresents recent advances in the development of microfluidic devices to evaluate the mechanical response of individual red blood cells (RBCs) and microbubbles flowing in constriction microchannels. Visualizations and measurements of the deformation of RBCs flowing through hyperbolic, smooth, and sudden-contraction microchannels were evaluated and compared. In particular, we show the potential of using hyperbolic-shaped microchannels to precisely control and assess small changes in RBC deformability in both physiological and pathological situations. Moreover, deformations of air microbubbles and droplets flowing through a microfluidic constriction were also compared with RBCs deformability.
引用
收藏
页数:18
相关论文
共 93 条
[1]   Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique [J].
Agrawal, Rupesh ;
Smart, Thomas ;
Nobre-Cardoso, Joao ;
Richards, Christopher ;
Bhatnagar, Rhythm ;
Tufail, Adnan ;
Shima, David ;
Jones, Phil H. ;
Pavesio, Carlos .
SCIENTIFIC REPORTS, 2016, 6
[2]  
Anderl Daniela, 2014, Proceedings in Applied Mathematics and Mechanics, V14, P667, DOI 10.1002/pamm.201410317
[3]  
Bento D., 2015, Micro Nanosyst, V7, P142
[4]  
Bento D., 2017, COMPUT METHOD BIOMEC, P1
[5]   Microbubble moving in blood flow in microchannels: effect on the cell-free layer and cell local concentration [J].
Bento, David ;
Sousa, Lucia ;
Yaginuma, Tomoko ;
Garcia, Valdemar ;
Lima, Rui ;
Miranda, Joao M. .
BIOMEDICAL MICRODEVICES, 2017, 19 (01)
[6]   Particulate Blood Analogues Reproducing the Erythrocytes Cell-Free Layer in a Microfluidic Device Containing a Hyperbolic Contraction [J].
Calejo, Joana ;
Pinho, Diana ;
Galindo-Rosales, Francisco J. ;
Lima, Rui ;
Campo-Deano, Laura .
MICROMACHINES, 2016, 7 (01)
[7]   Objective comparison of particle tracking methods [J].
Chenouard, Nicolas ;
Smal, Ihor ;
de Chaumont, Fabrice ;
Maska, Martin ;
Sbalzarini, Ivo F. ;
Gong, Yuanhao ;
Cardinale, Janick ;
Carthel, Craig ;
Coraluppi, Stefano ;
Winter, Mark ;
Cohen, Andrew R. ;
Godinez, William J. ;
Rohr, Karl ;
Kalaidzidis, Yannis ;
Liang, Liang ;
Duncan, James ;
Shen, Hongying ;
Xu, Yingke ;
Magnusson, Klas E. G. ;
Jalden, Joakim ;
Blau, Helen M. ;
Paul-Gilloteaux, Perrine ;
Roudot, Philippe ;
Kervrann, Charles ;
Waharte, Francois ;
Tinevez, Jean-Yves ;
Shorte, Spencer L. ;
Willemse, Joost ;
Celler, Katherine ;
van Wezel, Gilles P. ;
Dan, Han-Wei ;
Tsai, Yuh-Show ;
Ortiz de Solorzano, Carlos ;
Olivo-Marin, Jean-Christophe ;
Meijering, Erik .
NATURE METHODS, 2014, 11 (03) :281-U247
[8]   Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy [J].
Dulinska Molak, I ;
Targosz, M ;
Strojny, W ;
Lekka, M ;
Czuba, P ;
Balwierz, W ;
Szymonski, M .
JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS, 2006, 66 (1-3) :1-11
[9]  
Faustino V., 2014, Em Visualization and Simulation of Complex Flows in Biomedical Engineering, V12, P151
[10]   Biomedical microfluidic devices by using low-cost fabrication techniques: A review [J].
Faustino, Vera ;
Catarino, Susana O. ;
Lima, Rui ;
Minas, Graca .
JOURNAL OF BIOMECHANICS, 2016, 49 (11) :2280-2292