Transient Analysis of Full-Wave Generalized PEEC Model for Interconnection Problems

被引:3
作者
Dou, Yuhang [1 ]
Wu, Ke-Li [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
关键词
Transient analysis; Integrated circuit modeling; Analytical models; Frequency response; RLC circuits; Convolution; Computational modeling; Causality; electromagnetic (EM); frequency-dependent elements; passivity; signal integrity (SI); stability; transient analysis; FREQUENCY-DOMAIN RESPONSES; MICROMODELING CIRCUIT; FORM EVALUATION; SIMULATION; CONVOLUTION; EFFICIENT;
D O I
10.1109/TMTT.2019.2934448
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, an efficient transient analysis method for high-speed interconnection and packaging problems is proposed. The method is committed to a full-wave generalized partial element equivalent circuit (G-PEEC) model with guaranteed stability and causality. With the proposed method, the full-wave G-PEEC model is represented by a few static compact subcircuits that are derived by applying the micromodeling circuit method to the G-PEEC model at a few discrete frequency points. Its transient response can be obtained by a linear combination of responses of the compact subcircuits, which can be simulated by the transient analysis method of SPICE. By adopting the compact subcircuits, which is an order reduced G-PEEC model, the transient simulation can be speeded up by two orders of magnitude when compared with the case if the subcircuits are generated directly from the G-PEEC model. Since the compact subcircuits are static, physically meaningful, and passive, the proposed transient analysis is with guaranteed stability and causality. Moreover, a frequency compensation strategy is proposed for preparing input signals of subcircuits to avoid the Gibbs phenomenon. Finally, three numerical examples, including eye-diagrams for a practical multilayer interconnection problem, are given, demonstrating the effectiveness, accuracy, scalability, and simplicity of the proposed method.
引用
收藏
页码:4084 / 4094
页数:11
相关论文
共 42 条
[41]   Model Analysis and System Parameters Investigation for Transient Wave in a Pump-Pipe-Valve System [J].
Liu, Zubin ;
Pan, Dingyi ;
Qu, Fengzhong ;
Hu, Jianxin .
WATER, 2020, 12 (04)
[42]   Traveling wave solution and Painleve' analysis of generalized fisher equation and diffusive Lotka-Volterra model [J].
Kundu, Soumen ;
Maitra, Sarit ;
Ghosh, Arindam .
INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2021, 9 (02) :494-502