A Sum-Product Theorem in Function Fields

被引:5
作者
Bloom, Thomas F. [1 ]
Jones, Timothy G. F. [1 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
NUMBER;
D O I
10.1093/imrn/rnt125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a finite subset of F-q((t(-1))), the field of Laurent series in 1/t over a finite field F-q. We show that, for any epsilon > 0, there exists a constant C dependent only on epsilon and q such that max{vertical bar A + A vertical bar, vertical bar AA vertical bar} >= C vertical bar A vertical bar(6/5-epsilon). In particular, such a result is obtained for the rational function field F-q(t). Identical results are also obtained for finite subsets of the p-adic field Q(p) for any prime p.
引用
收藏
页码:5249 / 5263
页数:15
相关论文
共 22 条
[1]  
[Anonymous], 2009, Contrib. Discrete Math
[2]  
[Anonymous], ONLINE J ANAL COMB
[3]   A sum-product estimate in finite fields, and applications [J].
Bourgain, J ;
Katz, N ;
Tao, T .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2004, 14 (01) :27-57
[4]  
Bourgain J., 2005, GEOM FUNCT ANAL, V17, P33
[5]   On a variant of sum-product estimates and explicit exponential sum bounds in prime fields [J].
Bourgain, L. ;
Garaev, M. Z. .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2009, 146 :1-21
[6]   On sums and products in C[x] [J].
Croot, Ernie ;
Hart, Derrick .
RAMANUJAN JOURNAL, 2010, 22 (01) :33-54
[7]  
Elekes G, 1997, ACTA ARITH, V81, P365
[8]  
Erdos P., 1983, STUDIES PURE MATH, P213
[9]   Sums and products from a finite set of real numbers [J].
Ford, K .
RAMANUJAN JOURNAL, 1998, 2 (1-2) :59-66
[10]   An Explicit Sum-Product Estimate in Fp [J].
Garaev, M. Z. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007