Assembly Multifunctional Three-Dimensional Carbon Networks by Controlling Intermolecular Forces

被引:7
作者
Sui, Simi [1 ,2 ,4 ]
Zhu, Shan [1 ,2 ]
Su, Lina [1 ,2 ]
Ma, Liying [1 ,2 ]
He, Chunnian [1 ,2 ,3 ,4 ]
Liu, Enzuo [1 ,2 ,3 ]
He, Fang [1 ,2 ]
Shi, Chunsheng [1 ,2 ]
Zhao, Naiqin [1 ,2 ,3 ,4 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
[2] Tianjin Univ, Tianjin Key Lab Composites & Funct Mat, Tianjin 300350, Peoples R China
[3] Collaborat Innovat Ctr Chem Sci & Engn, Tianjin 300350, Peoples R China
[4] Minist Educ, Key Lab Adv Ceram & Machining Technol, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon nanostructures; van der Waals forces; hydrogen bonds; self-assembly; multifunctional materials; ACTIVATED CARBON; ENERGY; DISPERSIONS; ELECTRODES; NANOTUBES; MONOLITH; HYBRIDS; STORAGE;
D O I
10.1021/acsami.8b12978
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Three-dimensional (3D) carbon networks (3DCNs) enjoy the merits of high surface area, effective mass-transfer ability, and mechanical stability. The physicochemical properties of such materials not only depend on their microstructures but also rely on the assembly forms. This work achieves different assembly forms of 3DCNs on the macroscale from powder, monolith, to clay and reveals the relations between intermolecular forces and these assembly forms. With the "weak" van der Waals forces, only 3DCN powders are obtained. The N-doping effect increases the part of "strong" van der Waals forces, which enables 3DCNs assembled as a monolith and supports 43 000 times its own weight. Furthermore, the introduction of aniline molecules and the corresponding hydrogen bond connections make carbon networks to transform into a clay with superior ductility and plasticity. Considering that 3DCNs can be engineered into functionalized materials by in situ incorporation of functional components such as Fe3O4, the composites with controllable forms are treated as promising candidate materials used in various fields.
引用
收藏
页码:36284 / 36289
页数:6
相关论文
共 39 条
[1]   Facile and green production of aqueous graphene dispersions for biomedical applications [J].
Ahadian, Samad ;
Estili, Mehdi ;
Surya, Velappa Jayaraman ;
Ramon-Azcon, Javier ;
Liang, Xiaobin ;
Shiku, Hitoshi ;
Ramalingam, Murugan ;
Matsue, Tomokazu ;
Sakka, Yoshio ;
Bae, Hojae ;
Nakajima, Ken ;
Kawazoe, Yoshiyuki ;
Khademhosseini, Ali .
NANOSCALE, 2015, 7 (15) :6436-6443
[2]   Catalysis research of relevance to carbon management: Progress, challenges, and opportunities [J].
Arakawa, H ;
Aresta, M ;
Armor, JN ;
Barteau, MA ;
Beckman, EJ ;
Bell, AT ;
Bercaw, JE ;
Creutz, C ;
Dinjus, E ;
Dixon, DA ;
Domen, K ;
DuBois, DL ;
Eckert, J ;
Fujita, E ;
Gibson, DH ;
Goddard, WA ;
Goodman, DW ;
Keller, J ;
Kubas, GJ ;
Kung, HH ;
Lyons, JE ;
Manzer, LE ;
Marks, TJ ;
Morokuma, K ;
Nicholas, KM ;
Periana, R ;
Que, L ;
Rostrup-Nielson, J ;
Sachtler, WMH ;
Schmidt, LD ;
Sen, A ;
Somorjai, GA ;
Stair, PC ;
Stults, BR ;
Tumas, W .
CHEMICAL REVIEWS, 2001, 101 (04) :953-996
[3]   An overview of the modification methods of activated carbon for its water treatment applications [J].
Bhatnagar, Amit ;
Hogland, William ;
Marques, Marcia ;
Sillanpaa, Mika .
CHEMICAL ENGINEERING JOURNAL, 2013, 219 :499-511
[4]   New Graphene Form of Nanoporous Monolith for Excellent Energy Storage [J].
Bi, Hui ;
Lin, Tianquan ;
Xu, Feng ;
Tang, Yufeng ;
Liu, Zhanqiang ;
Huang, Fuqiang .
NANO LETTERS, 2016, 16 (01) :349-354
[5]   Advanced carbon aerogels for energy applications [J].
Biener, Juergen ;
Stadermann, Michael ;
Suss, Matthew ;
Worsley, Marcus A. ;
Biener, Monika M. ;
Rose, Klint A. ;
Baumann, Theodore F. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :656-667
[6]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[7]   Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors [J].
Farma, R. ;
Deraman, M. ;
Awitdrus, A. ;
Talib, I. A. ;
Taer, E. ;
Basri, N. H. ;
Manjunatha, J. G. ;
Ishak, M. M. ;
Dollah, B. N. M. ;
Hashmi, S. A. .
BIORESOURCE TECHNOLOGY, 2013, 132 :254-261
[8]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[9]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950
[10]  
Frackowiak E., 2003, LOW DIMENSIONAL SYST