Inverse source problem for a distributed-order time fractional diffusion equation

被引:16
作者
Cheng, Xiaoliang [1 ]
Yuan, Lele [1 ]
Liang, Kewei [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2020年 / 28卷 / 01期
关键词
Inverse source problem; distributed-order time fractional diffusion equation; Tikhonov regularization; convergence analysis; a-priori parameter choice; Morozov's discrepancy principle; IMPLICIT DIFFERENCE-SCHEMES; UNKNOWN SOURCE; HEAT-SOURCE;
D O I
10.1515/jiip-2019-0006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies an inverse source problem for a time fractional diffusion equation with the distributed order Caputo derivative. The space-dependent source term is recovered from a noisy final data. The uniqueness, ill-posedness and a conditional stability for this inverse source problem are obtained. The inverse problem is formulated into a minimization functional with Tikhonov regularization method. Further, based on the series representation of the regularized solution, we give convergence rates of the regularized solution under an a-priori and an a-posteriori regularization parameter choice rule. With an adjoint technique for computing the gradient of the regularization functional, the conjugate gradient method is applied to reconstruct the space-dependent source term. Two numerical examples illustrate the effectiveness of the proposed method.
引用
收藏
页码:17 / 32
页数:16
相关论文
共 34 条
[1]   Estimates for a general fractional relaxation equation and application to an inverse source problem [J].
Bazhlekova, Emilia .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (18) :9018-9026
[2]   Application of a fractional advection-dispersion equation [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1403-1412
[3]   Finite Difference/Finite Element Methods for Distributed-Order Time Fractional Diffusion Equations [J].
Bu, Weiping ;
Xiao, Aiguo ;
Zeng, Wei .
JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (01) :422-441
[5]   Structural identification of an unknown source term in a heat equation [J].
Cannon, JR ;
DuChateau, P .
INVERSE PROBLEMS, 1998, 14 (03) :535-551
[6]   Theory and simulation of time-fractional fluid diffusion in porous media [J].
Carcione, Jose M. ;
Sanchez-Sesma, Francisco J. ;
Luzon, Francisco ;
Perez Gavilan, Juan J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (34)
[7]  
Chechkin A.V., 2003, Fract. Calc. Appl. Anal, V6, P259
[8]  
Ford NJ, 2015, ELECTRON T NUMER ANA, V44, P289
[9]   Two Alternating Direction Implicit Difference Schemes for Two-Dimensional Distributed-Order Fractional Diffusion Equations [J].
Gao, Guang-hua ;
Sun, Zhi-zhong .
JOURNAL OF SCIENTIFIC COMPUTING, 2016, 66 (03) :1281-1312
[10]   Some high-order difference schemes for the distributed-order differential equations [J].
Gao, Guang-hua ;
Sun, Hai-wei ;
Sun, Zhi-zhong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 298 :337-359