Wavelet and neuro-fuzzy conjunction model for precipitation forecasting

被引:242
|
作者
Partal, Turgay
Kisi, Oezguer [1 ]
机构
[1] Erciyes Univ, Fac Engn, Dept Civil Engn, Hydraul Div, TR-38039 Kayseri, Turkey
[2] Tech Univ Istanbul, Dept Civil Engn, Hydraul Div, TR-34469 Istanbul, Turkey
关键词
wavelet; discrete wavelet; transform; neuro-fuzzy; precipitation; forecast;
D O I
10.1016/j.jhydrol.2007.05.026
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A new conjunction method (wavelet-neuro-fuzzy) for precipitation forecast is proposed in this study. The conjunction method combines two methods, discrete wavelet transform and neuro-fuzzy. The observed daily precipitations are decomposed some subseries by using discrete wavelet transform and then appropriate sub-series are used as inputs to the neuro-fuzzy models for forecasting of daily precipitations. The daily precipitation data of three stations in Turkey are used as case studies. The wavelet-neuro-fuzzy model is provided a good fit with the observed data, especially for time series which have zero precipitation in the summer months and for the peaks in the testing period. The conjunction models are compared with classical neuro-fuzzy model. The benchmark results showed that the conjunction model produced significantly better results than the tatter. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:199 / 212
页数:14
相关论文
共 50 条
  • [11] Wavelet and neuro-fuzzy conjunction model for predicting water table depth fluctuations
    Kisi, Ozgur
    Shiri, Jalal
    HYDROLOGY RESEARCH, 2012, 43 (03): : 286 - 300
  • [12] Wavelet and neuro-fuzzy conjunction model for predicting water table depth fluctuations
    Shiri, J. (j_shiri2005@yahoo.com), 1600, Nordic Association for Hydrology (43): : 286 - 300
  • [13] A Hybrid Wavelet and Neuro-Fuzzy Model for Forecasting the Monthly Streamflow Data
    Alpaslan Yarar
    Water Resources Management, 2014, 28 : 553 - 565
  • [14] Wavelet and adaptive neuro-fuzzy inference system conjunction model for groundwater level predicting in a coastal aquifer
    Wen, Xiaohu
    Feng, Qi
    Yu, Haijiao
    Wu, Jun
    Si, Jianhua
    Chang, Zongqiang
    Xi, Haiyang
    NEURAL COMPUTING & APPLICATIONS, 2015, 26 (05) : 1203 - 1215
  • [15] Precipitation forecasting by using wavelet-support vector machine conjunction model
    Kisi, Ozgur
    Cimen, Mesut
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2012, 25 (04) : 783 - 792
  • [16] Artificial wavelet neuro-fuzzy model based on parallel wavelet network and neural network
    Ahmad Banakar
    Mohammad Fazle Azeem
    Soft Computing, 2008, 12 : 789 - 808
  • [17] Artificial wavelet neuro-fuzzy model based on parallel wavelet network and neural network
    Banakar, Ahmad
    Azeem, Mohammad Fazle
    SOFT COMPUTING, 2008, 12 (08) : 789 - 808
  • [18] A Novel Ensemble Neuro-Fuzzy Model for Financial Time Series Forecasting
    Vlasenko, Alexander
    Vlasenko, Nataliia
    Vynokurova, Olena
    Bodyanskiy, Yevgeniy
    Peleshko, Dmytro
    DATA, 2019, 4 (03)
  • [19] Comparative study of wavelet based neural network and neuro-fuzzy systems
    Banakar, Ahmad
    Azeem, Mohammad Fazle
    Kumar, Vinod
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2007, 5 (06) : 879 - 906
  • [20] Particle swarm optimized neuro-fuzzy system for photovoltaic power forecasting model
    Douiri, Moulay Rachid
    SOLAR ENERGY, 2019, 184 : 91 - 104